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Nothing in biology makes sense
except in the light of evolution.

— [hesdosiws Dw}/wn/sk(/ — 1973

AZ QUOTES

https://biologie-lernprogramme.de/daten/programme/js/homologer/daten/lit/Dobzhansky.pdf
o AERREER BN AE



https://biologie-lernprogramme.de/daten/programme/js/homologer/daten/lit/Dobzhansky.pdf

Evolution

* Charles Darwin’s 1859 book (On the Origin of Species By
Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life) introduced the theory of
evolution.

* At the molecular level, evolution is a process of mutation
with selection.

* Molecular evolution is the study of changes in genes and
proteins throughout different branches of the tree of life.

* Phylogeny is the inference of evolutionary relationships.




1960s: globin phylogeny

« tree of 13 orthologs by Margaret Dayhoff and colleagues

* Arrow 1: node corresponding to last common ancestor of a group of vertebrate globins.
* Arrow 2: ancestor of insect and vertebrate globins
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The neighbor-joining tree of SARS-CoV-2
related coronaviruses

* CDSs were aligned based on translated amino acid sequences using MUSCLE
v3.8.31 ...

* Phylogenetic relationships were constructed using the neighbor-joining method based
on Kimura’s two-parameter model.
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Phylogenetic Relationship of CoVs

e Sequence alignment was carried out using MUSCLE software.

« Gblocks was used to process the gap in the aligned sequence.

« Using MegaX, we inferred all maximum likelihood phylogenetic trees.
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Flow to build Phylogenetic tree
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Lineage B clade-specific determinants for
human ACEZ2 usage

« Replacing all 14 contact points and the surrounding amino acids (known as the
receptor-binding motif (RBM)) led to increased ACE2 entry with clade 2 and 3 RBDs

* 2 -1 (version 3) =clade 2 residues 322—400 + clade 1 residues 400-501
* 3 -1 (version 3) =clade 3 residues 322—385 + clade 1 residues 386-501
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Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B

betacoronaviruses. Nat Microbiols, 562—569 (2020).



Lineage B betacoronavirus RBD alignment

317 326 336 346 356 366 376 386 396 406 416 426 436 446 456 466 476 486 496 500

ACE2 contact - - - .. - . - . wer .

SARS PNITNLCPFGEVFNATKFPSVYAWERKKISNCVADYSVLYN-STFFSTFKCYGVSATKLNDLCFSNVYADSFVVKGDDVRQ IAPGQTGVIADYNYKLPDD FMGCVLANNTRN IDATS TGN YNYKYRY LREGKLRPFERDI SNVPFS PDGKPCT - PPALNCYWPLND Y GFYTTTG IGYQPYRVVVLS
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Extended Data Fig. 4 | Lineage B panel RBD sequence features. a, Amino acid sequences corresponding to SARS-spike residues 317 through 500 were
aligned with ClustalW. Contact points between SARS-spike and human ACE2 are indicated with an (*). Clade 2 sequences are shown as compared

to clade 2 As6526, with identical residues indicated with a (.) and sites that vary between clade 2 viruses highlighted in purple. Loop deletions are
highlighted in orange. b, Amino acid alignment of 2019-nCoV RBD and consensus RBD sequences for clade 1and 2 and BM48-31 (clade 3). Loop deletions
are highlighted in orange.

Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B

betacoronaviruses. Nat Microbiols, 562—569 (2020).



1. Sequence Alignment
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Manguel M, Samaniego F.J., Abraham Wald’s Work on Aircraft Suvivability, J. American Statistical Association. 79, 259-270, (1984) . Adapted from Cedric Notredame




ON PROTEIN SYNTHESIS

By F. H. C..CRICK

Medical Research Council Unit for the Study of Molecular Biology,
Cavendish Laboratory, Cambridge

 Biologists should realise that before long we shall have a subject
which might be called ‘protein taxonomy’—the study of the
amino acid sequences of the proteins of an organism and the

comparison of them between species.

* |t can be argued that these sequences are the most delicate
expression possible of the phenotype of an organism and that

vast amounts of evolutionary information may be hidden away

within them.




Sequence alignment  http://phylo.cs.mcgill.ca/
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Your goal is to move sequences of blocks horizontally in order
toicraatathe mraiimurrurberaf calurmneefsimilaneals: However, the sequences are not identical. Thus, color mismatches
and gaps are unavoidable and you receive penalties for that.
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1.1 Substitution Matrix

1. Sequence Alignment



How Can We Compare Sequences ?

e To compare Sequences, we need to compare residues
 \We need to know how much it COSTS to SUBSTITUTE

e an Alanine into an Isoleucine
e a Tryptophan into a Glycine

* The table that contains the costs for all the possible
substitutions is called the SUBSTITUTION MATRIX

Adapted from Cedric Notredame



Making a Substitution Matrix

Some Residues are Easier To mutate into other

The Diagonal Indicates How Conserved a
similar.

residue tends to be.
W is VERY Conserved
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How to derive that matrix?
PAM



A R N [ D & Q E G H 1 L K | M F P S T | WY \%
Ala | Arg [ Asn [ Asp [ Cys [ Gln | Glu | Gly | His | Ile | Leu | Lys | Met | Phe | Pro | Ser | Thr | Trp | Tyr | Val

A

R 30

S A; = fre. of amino acid / aligned with j

D 154 o BS2

C 33 10 0 0

Q 83 120 50 78 (v]

E 266 (9] 94 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 3 10 243 23 10

I 66 30 36 13 17 g 35 0 3

L o5 17 37 0 ¥ 75 15 17 40 253

K 57 477 322 85 0 147 104 60 23 43 39

M 29 17 €] (¢] 2] 20 T 7 a 57 207 20

F 20 i 7 0 0 0 17 20 20 167 (6] 17

P 345 67 27 10 10 83 40 49 50 7 43 43 4 7

S 772 137 432 98 117 47 86 450 26 20 32 168 20 40 268

T 590 20 169 57 10 37 31 50 14 129 52 200 28 10 73 636

W o 27 3 0 8} (] 0 e} 3 Q 13 (s} 0 10 (¢} 7 o}

Y 20 3 36 0 30 6] 10 0 40 13 23 10 0 260 (¢} 22 23 6

V 365 20 12 17 33 27 37 97 30 661 303 17 77 10 50 43 186 (6] 17
A R N |D € Q |E G |H |I I; K |[M |F P S T W Y |V
Ala | Arg [ Asn | Asp | Cys |GIn |Glu |Gly |His |Ile |[Leu |Lys | Met | Phe |Pro | Ser | Thr | Trp | Tyr | Val

FIGURE 3.8 Numbers of accepted point mutations, multiplied by 10, in 1572 cases of amino acid substitutions from closely related protein
sequences. Amino acids are presented alphabetically according to the three-letter code. Notice that some substitutions (green shaded boxes)
are very commonly accepted (such as V and I or S and T). Other amino acids, such as C and W, are rarely substituted by any other residue
(orange shaded boxes).

Bioinformatics and Functional Genomics, Third Edition, Jonathan Pevsner.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

Companion Website: www.wiley.com/go/pevsnerbioinformatics




Normalized frequencies of amino acids,
1

TABLE 3.1 Normalized frequencies of amino acid. These values sum to 1. If the 20
amino acids were equally represented in proteins, these values would all be 0.05 (i.e.,
5%); instead, amino acids vary in their frequency of occurrence.

Gly 0.089 Arg 0.041
Ala 0.087 Asn 0.040
Leu 0.085 Phe 0.040
Lys 0.081 Gln 0.038
Ser 0.070 lle 0.037
Val 0.065 His 0.034
Thr 0.058 Cys 0.033
Pro 0.051 Tyr 0.030
Glu 0.050 Met 0.015
Asp 0.047 Trp 0.010

some are more common (G, A, L, K) and some rare (C, Y, M, W).

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-1, Page 81



The relative mutability of amino acid /, m,

« the # of jwas observed to mutate / the overall occurrence frequency of

(7)

e |n a scoring system alignment of two tryptophans will be weighted more
heavily than two asparagines.

TABLE 3.2 Relative mutabilities of amino acids. The value of alanine is arbitrarily set

to 100.
Asn 134 His 66
Ser 120 Arg 65
Asp 106 Lys 56
Glu 102 Pro 56
Ala 100 Gly 49
Thr 97 Tyr 41
lle 96 Phe 41
Met 94 Leu 40
Gin 93 Cys 20
Val 74 Tp 18

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Table 3-2, Page 82



Mutation matrix — original amino acids
(columns) and replacements (rows)

« The relative mutability of amino acid /

Original amino acid

A R N D C Q E G H I L K M F P S T W Y v
_Ala Arg Asn Asp Cys Gln Glu Gly His lle Leu Lys Met FPhe Pro Ser Thr Trp Tyr Val
98.7 0.0 0.1 0.1 0.0 0.1 0.2 0.2 0.0 0.1 0.0 0.0 0.1 0.0 0.2 0.4 0.3 0.0 0.0 0.2
0.0 99.[ 0.0 0.0 0.0 0.1 0.0 nn 01 0nn an n? nn an an N 0n 01 an NG

0.0 0.0 982 | 04 0.0 0.0 0.1 — — . 1 1 J
0 Lon pEEL oL 00 00 0L M;; = 1 — Am;, , where A is a proportion constant

0.0 0.0 0.0 0.0 997 |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
0.0 0.1 0.0 0.1 0.0 988 | 03 0.0 0.2 0.0 0.0 0.1 0.0 0.0 Q.1 0.0 0.0 0.0 0.0 0.0
0.1 0.0 Q.1 0.6 0.0 04 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Q.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.1 0.1 0.0 0.0 0.1 994 | 00 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1
0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 99.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 a.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.3
0.0 0.0 .0 0.0 0.0 0.1 Q.0 0.0 0.0 0.2 995 | 00 0.5 0.1 Q.0 0.0 0.0 .0 Q.0 0.2

Replacement amino acid
< =<l g[=E 2w m 2w C o mo|nl o Z B e

0.0 04 |03 o1 00 |01 0.1 00 |00 0.0 00 [993 (02 |00 |00 |01 0.1 0.0 0.0 | 00
0.0 00 |00 |00 |00 |00 00 |00 |00 0.1 0.1 00 [987 J00 |00 |00 |00 |00 0.0 | 00
0.0 00 loo Ioo Ioo |00 00 |00 |00 0.1 0.1 00 |00 |95 |oco |00 |00 |00 03 | 00
0.1 0. ;{m A .01 00 |00 |01 0.0 00 |00 [00 |00 [9837] 0.1 00 |00 00 | 00
0.3 0. M:: = ]l oo 0.1 02 |00 0.0 00 |01 0.0 00 |02 [9847704 |01 0o |00
02 oMjj = o, 0o 00 |00 |00 0.1 00 |01 0.1 00 |o1 03 |[987 |00 0.0 |01
0.0 0. Z . Ai j 0.0 00 |00 |00 0.0 00 |00 |00 |00 |00 |00 |00 |998 |00 |00
0.0 0w juw UM 00 00 |00 |00 0.0 00 |00 |00 |02 |00 |00 |00 |00 995 | 00
0.1 00 |00 |00 |00 |00 0.0 |00 |00 0.6 0.1 00 |02 |60 |00 |00 |01 0.0 0.0 [99.0

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-9,Page 84



From a mutation probability matrix to a
log odds matrix

= 10x1 M1\ where R M
= X 0810( ),W ere n;j; —
fi T fi
* f: the probability of a.a. i occurring in the second sequence
by chance

* M;: models the observed change

* alog scoring matrix, why?

* doing a pairwise alignment (or a BLAST search) we know what
score to assign to two alighed amino acid residues.

e Logarithms are easier to use for a scoring system => sum the
scores of aligned residues rather than multiply them.

. .Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Eqg. 3-4, Page 89



What do the numbers mean in a log
odds matrix?

e 0: neutral

e +2: indicates that the amino acid replacement
occurs 1.6 times as frequently as expected by

chance

e —10: that the correspondence of two amino acids in
an alignment that accurately represents homology
(evolutionary descent) is one tenth as frequent as
the chance alignment of these amino acids




PAM matrices

- PAM1

* At an evolutionary interval of PAM1, one change has occurred
over a length of 100 amino acids.

e Other PAM matrices are extrapolated from PAM1

* PAMx = multiplied PAM1 by itself
 PAM250 matrix: for proteins that share ~20% identity

Adapted from Cedric Notredame



Mutation Matrix vs Log-odds score matrix

« Take PAM250 as an example, from asymmetric to

symmetric, why?
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ment, and database searching (e.g.. BLAST) allow you to select an assortment of PAM matrices such as

PAM250. PAM70, and PAM30. Adapted from NCBI. ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/.

o
(@)}
()
(o]0}
©
(a
e
(]
(omy
(%]
>
(0]
o
(o
©
=
o+
(g°]
C
o
9
=
o
=
©
w
©
—
on
w
=
=
o
{ o
()
O
©
(4
kel
)
(&}
(oo
D
L
ge)
{e)
©
(%)
(8]
S
(4°]
€
S
o
£
kel
o




Why does PAM1 become symmetric?

20
Am;Aij AAjj i=1,i%j Aij AAjj AAij
* MU = 320 A =mjx 20 A ; - . 20 A : - .
i=1,izj Aij i=1,i%j Aij fj i=1,izjAij S
20
. M. — AmiAi; _ AAij . i=1,izj Aij AAij _)'Aij
ji =3z T MiXSae = T 20 4 F
i=1,i=j Aij i=1,i=j Aij i i=1,i=j Aij i
AAij AAij
Mij _ fj _Mij_ i _Mi_p.
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BL.Ocks SUbstitution
Matrix (BLOSUM)

Henikoff, S.;: Henikoff, J.G. (1992). "Amino Acid Substitution
Matrices from Protein Blocks". PNAS. 89 (22): 10915-10919




Procedure of BLOSUM

e Cluster together sequences in a family
whenever more than L% identical residues

are shared, for BLOSUM-L.

« Based on local alignments & use aligned
ungapped regions of protein families.

e Count number of substitutions across
different clusters (in the same family).

« Estimate frequencies using the counts.




Summary of PAM and BLOSUM
matrices

 BLOSUMG62 is a matrix calculated from comparisons of sequences with
no less than 62% divergence.

* the default matrix in BLAST 2.0
* Most widely used (PAM250)

* A higher PAM number, and a lower BLOSUM number, tends to
correspond to a matrix tuned to more divergent proteins.

BLOSUMSO BLOSUM®62 BLOSUM45
PAM30 PAM120 PAM250
Less divergent ﬁ More divergent
Human versus Human versus
chimpanzee beta globin bacterial globins

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-18, Page 94



1.2 Pairwise Alignment



HOW Can we Align Two Sequences?

Different types of pairwise comparisons

Method name Situation

Dot-plot General exploration of your sequence
Discovering repeats
Finding long insertion/deletions
Extracting portions of sequences to make a multiple
alignment

Local alignments Comparing sequences with partial homology
Making high quality alignments
Making residue-per-residue analysis

Global alignments Comparing two sequences over their entire length
|dentifying long insertion/deletions
Checking the quality of your data
|dentifying every mutation in your sequences

Adapted from Cedric Notredame



Global Alignments

* Take 2 Nice Protein Sequences
* A good Substitution Matrix (Blosum62)
* DYNAMIC PROGRAMMING

>Seql

THEFATCAT THEFA-TCAT
>Seq2 THEFASTCAT
THEFASTCAT

DYNAMIC
PROGRAMMING

Adapted from Cedric Notredame



Dynamic Programming



THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Bellman, R. The theory of dynamic programming. Bulletin of the American Mathematical Society 60, 503—-515 (1954).



Using Dynamic Programming To
Align Sequences

* DP invented in the 1950s by Bellman
* Programming < Tabulation

* Re-invented in 1970 by Needlman and Wunsch

* |t took 10 year to find out...

* Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method
applicable to the search for similarities in the amino acid sequence of two

proteins". Journal of Molecular Biology. 48 (3): 443-53

Adapted from Cedric Notredame


http://linkinghub.elsevier.com/retrieve/pii/0022-2836(70)90057-4

Global Alignment

Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method

applicable to the search for similarities in the amino acid sequence of
two proteins". Journal of Molecular Biology. 48 (3): 443-53



http://linkinghub.elsevier.com/retrieve/pii/0022-2836(70)90057-4

The Principal of DP

[T you extend optimally an optimal alignment of two
sub-sequences, the result remains an optimal
alignment

Deletion

X-XX ? .
XXXX + 2 Allgnmen‘r

x | Insertion

Adapted from Cedric Notredame



Finding the score of //

e Sequence 1: [1-/]
e Sequence 2: [1-]]

* The optimal alignment of [1-i] vs [1-/] can finish in three
different manners:

X
X

Adapted from Cedric Notredame



Finding the score of //

Three ways to build the alignment

: 1.1
1.1i-1 "
1.5-1 + I 1.3

Adapted from Cedric Notredame



Formalizing the algorithm

. 1.4 -
score_m(i,j-1) + gap_s 1..5-1 +
score_m(i,j)= best € score_m(i-1,j-1) + 11'1 + I
match_s/mismatch_s =d”

score_m(i-1,j) + gap_s

==
Eae
|

Adapted from Cedric Notredame



Arranging Everything in a Table

|
i E
G H

H || | e
B
H
=

Adapted from Cedric Notredame



Filing Up The Matrix

score_m(i,j-1) + gap_s

==

=

score_m(i,j)= best score_m(i-1,j-1) +
match_s/mismatch_s

=
(W
|
R
+

score_m(i-1,j) + gap_s

==

Adapted from Cedric Notredame



Adapted from Cedric Notredame



Delivering the alisnment: Trace-
back

H
@p]
>
o

Scoreof 1..3Vs 1...4
=

Optimal Aln Score

Adapted from Cedric Notredame



Trace-back: possible implementation

while (! (1==0 && J==0)):
if (direc m[i] [J]== ‘sub’): #SUBSTITUTION

alnl[aln len]=prolSeq[--1i]

aln2[aln len]=pro2Seq[--J]

elif (direc m[i][j]==‘del’): #DELETION
alnl[aln len]='-"
aln2[aln len]=pro2Seq[--J]

elif (direc m[i] [j]==‘ins’): #INSERTION
alnl[aln len]=prolSeq[0] [--1]
alnZ2faln len]='-"

aln_len++

}

Adapted from Cedric Notredame




Local Alignment
Smith & Waterman algorithm

Smith, T. F. & Waterman, M. S. Identification of common
molecular subsequences. /. Mol Biol. 147, 195-7 (1981).



Global alignment VS local alignment

* Global : extends from one end of each sequence to the other.

* Local : finds optimally matching regions within two sequences,

* Subsequences useful to find domains (or limited regions of homology) within sequences

* Smith and Waterman (1981) solved the problem of performing optimal local sequence
alignment.

* Other methods (BLAST, FASTA) are faster but less thorough.

GLOBAL Alighment LOCAL Alignment

Adapted from Cedric Notredame



Global alignment (top) includes matches
ignored by local aligsnment (bottom)

a

( ) NP_824492 o 1 MCGDMTVHTVEYIRYRIPEQUSAEFLAAYTRAAAQDLAARAPQCVDYELARC 50
NP 337032.1 1 0
NP_824492.1 51 EEDFEHFVLRITWTSTEDHIEGFREKSELFPDFLAEIRPYISSIEEMRHYK 100
NP__337032.1 1 0
NP_824492.1 101 P’I‘T\/PG’IGAAVPTLYAWAGGAEAFARLTEVFYBKVLKDDVLAPVFEGMAP 150 G lobal:

] sl B e , ,

NP _337032.1 1 MEGMDQMPKSFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY ---=P 43 I 5 % I d e ntlty
NP 824492.1 151 EH-—--- ARHVALWLGEVFGCPAAYSETQGGHGHMVAKHLGKNITEVORR 195
maeaza .
NP 824492.1 19¢ RWVNLLQDAADDAGLPT-DAEFRSAFLAYAEKGTRLAVYFSGEDAVDPAE 244
mpasosza s ey ok
NP_824492.1 245 QPVPQWSWGAMPPY(QP 260
NP_337032.1 135 134

(0)
ND 224492.1 113 TLYAWAGGAEAFARLTEVFYEKVLKDDVLADVFEGMADEH- - - - - AAHVA 157
NP_337032.1 10 smlmAvclzcl;zlu.(T LbAiQéélL’!rAQ\I/'AEDEVIIJRR\IN e EI’éDDLAGAééﬁI:ﬁ 55
NP _824492.1 158 LWLEGEVFGGPAAYSETQOGGHGHMVAKHLGKNITEVQRRRWVNLLODAADD 207 LO Cal :
NP_337032.1 56 ME‘II..EQYWCI;CI-:EI’RT\L‘.I‘:!L éRéLééLéﬁéf&iéFRléLiéllanAJ;;ﬁé;ﬁiJ\VAs 104 3 O% i d e ntlt)'
NP_824492 ok 208 DAGLPT-DAEFRSLFLAYAE 225
NP 337032.1 105 IDSE.'Z!‘LI'!)DLLHILRELT!.D\LLIL 123

B&FG 3e, Fig. 3-23, Page 1



The Smith and Waterman Algorithm

« 0 => Ignore the rest of the Matrix => terminate a local

alignment
F(i-1,j) + Gep 1:;—1 + |
F(i-1,j-1) + Mat[ij] | 272 4 I
F(i,j)= best 1..3-1
F(ij-1) + Gep il I

0 >

Adapted from Cedric Notredame




Filing Up a SW Matrix

F(i,j)= best
F(i-1,j) + Gep 1

F(-1i-0) + Matli)| 177+ B

F(ij-1) +Gep  |7”

0 >

Adapted from Cedric Notredame




Filling up a SW matrix: borders

p

QO U=z pPHYP O I

OO O0OO0OO0OO0OO0 OO I
o »
o Z

o H
o N
o ™
o N
o ¥
o H

Local alignments NEVER

start/end with a gap...

Adapted from Cedric Notredame



Filling up a SW matrix

e Best Local score <~ Beginning of the trace-back
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Adding Affine Gap Penalties
Forcing a bit of Biology into your alignment

Gotoh, O. An improved algorithm for matching biological
sequences. J. Mol. Biol. 162, 705-8 (1982).

Adapted from Cedric Notredame



Gap Penalties: Opening & extension

Gaps : Positions at which a letter is paired with a null are called.

Gap scores are typically negative.

Opening a gap is more expensive than extending it

* Since a single mutational event may cause the insertion or deletion of more than one
residue, the presence of a gap is ascribed more significance than the length of the

gap.
Thus there are separate penalties for gap open and gap extension.

Gap Opening Penalty

Gap Extension Penalty
Seq AGARFIELDTHE----CAT

NEUNENRERN | 1]
Seq BGARFIELDTHELASTCAT

Adapted from Cedric Notredame




But Harder To compute---

* More Than 3 Ways to extend an Alignment

X-XX
XXXX

Opening
Deletion %:

Extension

Alignment

Opening
Insertion —<

Extension

Adapted from Cedric Notredame



More Questions Need to be asked

e For instance, what is the cost of an insertion ?

?7?-

==
o H

??7X

Adapted from Cedric Notredame



Solution: Maintain 3 Tables

M(i-1,j-1) + Mat(i,j) 5
M(i,j)= best Ix(i-1,j-1) + Mat(i,j) 1."j_1

ly(i-1,j-1) + Mat(i,j)

1...i-1X X
M(i-1,j) + gop 1..j X -
Ix(i,j)= best :

Ix(i-1,j) + gep 1...i-1X X

1.j - -

1.0 X -

M(i,j-1) + gop 1..j-1 X X

ly(i,j)= best

ly(i,j-1) + gep 1.0 - _

1..j-1X X

Adapted from Cedric Notredame



A Score in Linear Space

* You never Need More Than The Previous Row
To Compute the optimal score

Adapted from Cedric Notredame



A Score in Linear Space

R1
R2

*

for i=1:l
for j=1:J
R2[i][j]=best

R2 J_l]r +gep
R1[j-1]+mat

R1[j]+gep
for J,
R1[j]=R2[j]

Adapted from Cedric Notredame



A Score in Linear Space

You never Need More Than The
Previous Row To Compute the optimal
score

You only need the matrix for the Trace-
Back,

Or do you 2?77

Adapted from Cedric Notredame



An Alignment in Linear Space

Forward Algorithm F(i,j)=Optimal score of

0..i Vs 0..j

M...i Vs N...]

B(i,j)+F(i,j)=
Optimal score of the alignment that
passes through pair i,j

|

|

v
I B(j,j)=Optimal score of
I

|

|

|

Backward algorithm

Myers, E. W. & Miller, W. Optimal alignments in linear space.Comput. Appl. Biosci. 4, 11-7 (1988).

Adapted from Cedric Notredame




An Alignment in Linear Space

Forward Algorithm Forward Algorithm

_ Optimal B(i,j)+F(i,j)

h 4
A

Backward algorithm Backward algorithm

Adapted from Cedric Notredame



An Alignment in Linear Space

Forward Algorithm

< B
AN

Backward algorithm

Recursive divide and conquer strategy:
Myers and Miller (Durbin p35)

Adapted from Cedric Notredame




Remember Not To Run Out of Memory

* A survey paper

* Chao, K.-M., Hardison R. C. and Miller, W., 1994, Recent
Developments in Linear-Space Alighment Methods: a
Survey, Journal of Computational Biology, 1: 271-291.

L

l

I &ee) |

HHIBE (Kun-Mao Chao)
BNRE L#




Recap: Pairwise alignment

e [N
* Needleman and Wunsch: Delivers the best SEr A

scoring global alignment

e Smith and Waterman: NW with an extra

state O

* Affine Gap Penalties: Making DP more

realistic
Forwa.ndTﬂggﬁrhm
* Linear space: Using Divide and Conquer l
|
Strategies Not to run out of memory !

Backward algorithm

Adapted from Cedric Notredame




1.3 Multiple Sequence Alignment



Sometimes two sequences are not
enough...

« The man with TWO watches NEVER knows the time

v

Adapted from Cedric Notredame



The COMPUTATIONAL Problem

« A nice set of Sequences
 Substitution Matrix (Blosum)

« Gap Penalties

 An Evaluation/Scoring Function
« An Alignment Algorithm

Adapted from Cedric Notredame



What is A Multiple Sequence
Alignment?

e Structural Criteria
« Residues are arranged so that those playing a similar role end
up in the same column.
« Evolution Criteria

« Residues are arranged so that those having the same ancestor
end up in the same column.

chite ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
wheat --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE
trybr KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
mouse ———-—-— KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP
kkk_ see . . * *e *

chite AATAKQNYIRALQEYERNGG-
wheat ANKLKGEYNKATAAYNKGESA
trybr AEKDKERYKREM--—-——————
mouse AKDDRIRYDNEMKSWEEQMAE

* . *
L] .o L]

Adapted from Cedric Notredame




=~ Phylogenic
Relatio

1

Functional AN ‘
Relation e |
By peellden - H C.H{Edm By Rico Heil (User:Silmaril) - private photo

Adapted from Cedric Notredame


https://en.wikipedia.org/wiki/de:User:Silmaril
https://commons.wikimedia.org/wiki/User:Peellden

Scoring function

« Sum of Pair (SP)

e Tree Cost: MSA with tree cost will be called
tree alignment.

e Circular Sum(CS)

-

S, . ATTCG S,:AT-TC-G }2

S, : AGTCG MSA S,:A-GTC-G - 2

S, : ATCAG ] S'31AT——CAG} J
Cost =8




MSA with SP-Score: Exact Algorithm

« Given
* k:# of Sequences
* n:Sequences of length

« Exactly by Dynamic Programming

« 0(2n") : D.Snakoff, Simultaneous solution of RNA folding,
alignment and Protosequence prolblems, SIAM J. Appl. Math.,(1985)

* Exact methods of multiple alignment use dynamic programming
and are guaranteed to find optimal solutions. But they are not
feasible for more than a few sequences.




MSA with SP-Score: Complexity

. Wang L. Jiang T. On the complexity of multiple sequence alignment, J
Comput Biol 1994 Winter;1(4):337-48

. multiple alignment with SP-Score => NP-complete reduction from shorest
common supersequence (non-metric : not symmetry)

TABLE 1. SCORE SCHEME I

a

A
1
1
1
1
0

Do =0 (%]
N = NN o
—_——— N NN [
Ll S =N S

—_ O N~ N o

. multiple tree alignment => MAX SNP-hard

. Paola Bonizzoni, Gianluca Della Vedoa The complexity with Multiple
sequence alignment with SP-score that is a metric, Theoretical
Computer Science; 259 (2001) 63-79

. multiple alignment with SP-Score => NP-complete reduction from node cover




Feng-Doolittle algorithm

D.F.Feng, R.F.Doolittle, Progressive sequence alignment as a prerequisite to
correct phylogenetic trees. J. Mol. Evol. 25, 351-360., (1987)



Progressive alignment

* Any exact method would be TOO SLOW.

* We will use a heuristic algorithm.

* Progressive alignment algorithm is the most popular

e use a guide tree (related to a phylogenetic tree) to determine how to
combine pairwise alignments one by one to create a multiple

alignment.
* Examples
e ClustalW
« MUSCLE
e - Greedy Heuristic (No Guaranty)
* + Fast

Adapted from Cedric Notredame



Feng-Doolittle MSA occurs in 3 stages

« Feng and Dolittle, 1988; Taylor 1989

1. Do a set of global pairwise alignments

* Needleman and Wunsch’ s dynamic programming
algorithm

2. Create a guide tree
3. Progressively align the sequences

—) C|ustering

Adapted from Cedric Notredame



Generate global pairwise alignments
(Progressive 1/3)

Score

beta globin
beta globin
beta globin
beta globin
nyoglobin
nyoglobin
nyoglobin
neuroglobin
neuroglobin
soybean

nyoglobin
neuroglobin
soybean
rice
neuroglobin
soybean
rice
soybean
rice

best score




Guide tree (Progressive 2/3)

Convert similarity scores to distance scores
A tree shows the distance between objects
Use UPGMA (defined in the phylogeny chapter)

ClustalW provides a syntax to describe the tree

[ beta_globin: 0.36022
beta_globin:0.36022Z, myodlobin: u.::li?ﬁ?lglohin: 0.39924

nyoglobin: 0. 38808, R { soybean: 0.30760

[ rice: 0.26184

neuroglobin:0.39924,
(

soybean:0.30760,
rice:0.26184)
:0.13652)

:0.06560) ;

Credit by B&FG 3e, Jonathan Pevsner




Progressive alignment (Progressive 3/3)

« Make a MSA based on the order in the guide tree
o Start with the two most closely related sequences

« Then add the next closest sequence
e Continue until all sequences are added to the MSA

e Rule: once a gap, always a gap, why?
* Gaps are often added to the first two (closest) sequences

* To change the initial gap choices later on would be to give more
weight to distantly related sequences

* To maintain the initial gap choices is to trust that those gaps are
most believable

Credit by B&FG 3e, Jonathan Pevsner




Progressive Alignment

Dynamic Programming Using A Substitution Matrix

ek,
=
| | .....'_
Taaapmugpny

Adapted from Cedric Notredame



ClustalW

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through

sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22, 4673-80 (1994).



The top 100 papers

THE PAPER
OUNTAIN

100-809 CITATIONS
{1 DGEASE paoer)

H,

Wabicn and Crick

2n atncire of
WA (1953)
5207 citations

1.000-9,999 CITATIONS (L4941 finihis

300,000

200,000

Total citations

100,000

30 40 50 60

70 80 90 100

Discipline colour

7| Bioinformatics

. Biology lab technique
. Crystallography

30 40 50 60
Ranking

. Mathematics/statistics
Medical statistics

B Medicine

. Phylogenetics

70 80 90

. Physical chemistry

B ehysics

. Psychology/psychiatry

Credit by Nature, http://www.nature.com/news/the-top-100-papers-1.16224


http://www.nature.com/news/the-top-100-papers-1.16224

=8

Click through to explore the Web of Science's all-time top-cited —
papers. (Data provided by Thomson Reuters, extracted on 7
October 2014).

Rank: 10 Citations: 40,289

Clustal W: improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Thompson, J. D., Higgins, D. G. & Gibson, T. J

Nucleic Acids Res. 22, 4673—-4680 (1994).

3,000

N
o
o
o

’

1,000
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Citations per year

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3



TITLE CITED BY YEAR

CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through 58342 1994
sequence weighting, position-specific gap penalties and weight matrix choice

JD Thompson, DG Higgins, TJ Gibson

Nucleic acids research 22 (22), 4673

T-Coffee: A novel method for fast and accurate multiple sequence alignment 5606 2000
C Notredame, DG Higgins, J Heringa
Journal of molecular biology 302 (1), 205-217

Pairwise alignmeat:
Calculate distance matrix
|UlmthdMohh.u4
Lgh2 Luply
PO el Local Alignment [Global Alignment
Hbb_Home: 0225
oy L TR ultiple Alignment
[ o & i
2 CibS_Petma: 0396
= Lgb2 Lupha: 042
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ClustalW

But owing to the vagaries of citation habits, BLAST has been
bumped down the list by Clustal, a complementary programme
for aligning multiple sequences at once. Clustal allows
researchers to describe the evolutionary relationships between
sequences from different organisms, to find matches among
seemingly unrelated sequences and to predict how a change at a
specific point in a gene or protein might affect its function. A
1994 paper describing ClustalW, a user-friendly version of the
software, is currently number 10 on the list. A 1997 paper on a
later version called ClustalX is number 28.

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3



ClustalW

The team that developed ClustalW, at the European Molecular Biology Laboratory
in Heidelberg, Germany, had created the program to work on a personal computer,
rather than a mainframe. But the software was transformed when Julie Thompson,
a computer scientist from the private sector, joined the lab in 1991. “It was a
program written by biologists; I'm trying to find a nice way to say that,” says
Thompson, who is now at the Institute of Genetics and Molecular and Cellular
Biology in Strasbourg, France. Thompson rewrote the program to ready it for the
volume and complexity of the genome data being generated at the time, while
also making it easier to use.

The teams behind BLAST and Clustal are competitive about the ranking of their
papers. It is a friendly sort of competition, however, says Des Higgins, a biologist at
University College Dublin, and a member of the Clustal team. “BLAST was a game-
changer, and they’ve earned every citation that they get.”

Credit By The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3



Thompson et al. (1994) for an explanation of the three stages
of progressive alignment implemented in ClustalW

Hbb_Human | -
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Figure 1. The basic progressive ali d illustrated using a set of
7glohnsofktwwnmrysmlcmn 'l'hesequememmmfmnSmsstt
(38): Hba__Horse: horse a-globin; Hba__Human: human c-globin; Hbb.__Horse:
horse -globin; Hbb__Human: human g-globin; Myg__Phyca: sperm whale
myoglobin; GIbS__Petma: lamprey cyanohaemoglobin; Lgb2__Luplu: lupin
Ieghamghbm In the distance matrix, the mean number of differences per residue
is given, The unrooted tree shows all branch lengths drawn to scale. In the rooted
tree, all branch lengths (mean number of differences per residue along each branch)
are given as well as weights for each seq In the multiple alj the
approximate positions of the 7 a-helices common to all 7 proteins are shown.
This alignment was derived using CLUSTAL W with default parameters and
the PAM (3) series of weight matrices.

Nucleic Acids Research, 1994, Vol. 22, No. 22 4675

In Figure 1 we give the 77 distance matrix between the 7 globin
sequences calculated using the full dynamic programming
method.

The guide tree

The trees used to guide the final multiple alignment process are
calculated from the distance matrix of step 1 using the Neighbour-
Joining method (21). This produces unrooted trees with branch
lengths proportional to estimated divergence along each branch.
The root is placed by a ‘mid-point’ method (15) at a position
where the means of the branch lengths on either side of the root
are equal. These trees are also used to derive a weight for each
sequence (15). The weights are dependent upon the distance from
the root of the tree but sequences which have a common branch
with other sequences share the weight derived from the shared
branch. In the example in Figure 1, the leghaemoglobin
(Lgb2__Luplu) gets a weight of 0.442, which is equal to the
length of the branch from the root to it. The human 8-globin
(Hbb_Human) gets a weight consisting of the length of the
branch leading to it that is not shared with any other sequences
(0.081) plus half the length of the branch shared with the horse
B-globin (0.226/2) plus one quarter the length of the branch
shared by all four haemoglobins (0.061/4) plus one fifth the
branch shared between the haemoglobins and myoglobin
(0.015/5) plus one sixth the branch leading to all the vertebrate
globins (0.062). This sums to a total of 0.221. In contrast, in
the normal progressive alignment algorithm, all sequences would
be equally weighted. The rooted tree with branch lengths and
sequence weights for the 7 globins is given in Figure 1.

Progressive alignment

The basic procedure at this stage is to use a series of pairwise
alignments to align larger and larger groups of sequences,
following the branching order in the guide tree. You proceed
from the tips of the rooted tree towards the root. In the globin
example in Figure 1 you align the sequences in the following
order: human vs. horse $-globin; human vs. horse a-globin; the
2 a-globins vs. the 2 (-globins; the myoglobin vs. the
haemoglobins; the cyanohaemoglobin vs. the haemoglobins plus
myoglobin; the leghaemoglobin vs. all the rest. At each stage
a full dynamic programming (26,27) algorithm is used with a
residue weight matrix and penalties for opening and extending
gaps. Each step consists of aligning two existing alignments or
sequences. Gaps that are present in older alignments remain fixed.
In the basic algorithm, new gaps that are introduced at each stage

Credit by B&FG 3e, Jonathan Pevsner



Hbd_Human |

Htb_Horse 2

Hba_Human 3

Pairwise alignment: -

: m,mu 5

. : _Petra 6

Calculate distance matrix  gh2 tuphe 7

Hta_Horse
Hba_
Unrooted neighbor- Hbb_Hoese
joining tree Hbb GitS_Petma
Lgb2_Luphy

Credit by B&FG 3e, Jonathan Pevsner



l —— MysPhyea
Ha_H
Unrooted neighbor- Hbb_Horse
joining tree Hob_H SRR

Lgh2_Luphy
% o Hbb_Human: 0221
Hbb_Home: 0225
0 219 Hba_Human: 0194
Rooted neighbor-joining Mba_Home: 0208
tree (guide tree) & Myg Fhoes 0411
sequence weights x CIbS_Peema: 0396
| £ Lgb2_Luphs: 0442

Credit by B&FG 3e, Jonathan Pevsner



% L Hbb_Human: 0221
. Mbb_Mome: Q225
A2 Hba_Human: 0194
. . e e 219
Rooted neighbor-joining 7 S
tree (guide tree) and 2 Myg Fhyes 041l
. i
sequence weights Gibs_Peema. 0398

\J
Progressive
alignment: Align
following the guide
tree

“ Credit by B&FG 3e, Jonathan Pevsner



Additional features of ClustalW improve
its ability to generate accurate MSAs

 Individual weights are assigned to sequences; very
closely related sequences are given less weight, while
distantly related sequences are given more weight

« Scoring matrices are varied dependent on the presence of
conserved or divergent sequences, e.g.:
« PAM20  80-100% id
« PAM60  60-80% id
« PAM120 40-60% id
e PAM350 0-40% id

» Residue-specific gap penalties are applied

Credit by B&FG 3e, Jonathan Pevsner






lterative methods

« compute a sub-optimal solution and keep modifying that
intelligently using dynamic programming or other methods until
the solution converges.

« MUSCLE, Mafft, HMMs, HMMER, SAM,, IterAlign, Praline

+: Good Profile Generators

-: Slow, Sometimes Inaccurate

Adapted from Cedric Notredame



Muscle

« Edgar, R. MUSCLE: a multiple sequence alignment method with reduced time and
space complexity. Bmc Bioinformatics 5, 1-19 (2004).

« Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res 32,1792-1797 (2004)

1.1 k-mer 1.2 1.3 progressive
counting UPGMA alignment
—— 3 I O ————
|_: %\ [ rv\ ——— MSA1
unaligned _ R '
sequences k-mer distance TREEA1
matrix D1 2.1 compute
< %ids from MSA1
e I A ] Kimura distance
= y— matrix D2
S - 2.3 progressive 22 UPGMA
MSA2 alignment TREE2
N - No,
f— — | delete
N N T | N
7 = : Vo '
———— 3.3 re-align ~ Yes,
&< 3.2 compute  profiles . save
subtree profiles

3.1delete . repest

edge from TREE2 i S eat
giving 2 subirees Adapted from Cedric Notredame



MUSCLE: Improve the progressive
alienment

« Build a draft progressive alignment sequences  kemer distance  TREE! —
. - %ids from MSAT
* Determine pairwise similarity through A-mer counting — & . }— Kimura distance
—— ¥ ; | matrix D2
) ) ) 2.3 progressive X v
« Compute triangular distance matrix MSAZ  aignment  pegy C0 oM w
—= — No,
i e e e —F——— delete
e Construct tree using UPGMA > =N == ) =
/?A ' ——— 3.3 re-align MSA 345; — — VYes
. . . : ; rofiles . ——— save
« Construct draft progressive alignment following tree K\;\sfbfrﬁi'zfo”é;is i score better? |\
. . . 3.1 delet = prd
« Compute pairwise identity through current MSA edge from TREE2 e T,

giving 2 subtrees

» Construct new tree with Kimura distance measures

« Compare new and old trees: if improved, repeat this step, if not improved, then we’re done
* Refinement of the MSA

« Split tree in half by deleting one edge

* Make profiles of each half of the tree

* Re-align the profiles

+ Accept/reject the new alignment

Credit by B&FG 3e, Jonathan Pevsner




MAFFT : Fast Fourrier Transforme

« Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Res. 30, 3059-66 (2002).

« Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinformatics 9, 286-98 (2008).

A Convert an amino acid sequence to a 2D wave . D Restrict the area of the DP matrix
L ]
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* ,““I I“[ k sequence 2
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E% © : @) Lo
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Adapted from Cedric Notredame




MAFFT

 Uses Fast Fourier Transform to speed up profile
alignment

« Uses fast two-stage method for building alignments
using A~-mer frequencies

« Offers many different scoring and aligning
techniques

 One of the more accurate programs available
* Available as standalone or web interface

« Many output formats, including interactive
phylogenetic trees

Credit by B&FG 3e, Jonathan Pevsner



Iterative method of MAFFT

Initial a Tree-dependent |
alignment | p partitioning
Sequences — | —
Q —
S [ ]
a b ¢ d e
replace Divide into
.(' S0 subalignments
is improved)
a
a Group-to-group £
b alignment
C m——— e = B
A - A
e w— p— O -

B&FG 3e Fig. 6.6 Page 215



Consistency-based
approaches




Progressive Alignment
When It Doesn’ t Work

SeqA GARFIELD THE LAST FAT CAT

SeqB GARFIELD THE FAST CAT

SeqC GARFIELD THE VERY FAST CAT

SeqD THE FAT CAT

CLUSTALW (Score=20, Gop=-1, Gep=0, M=1)

SeqA GARFIELD THE
SegB GARFIELD THE

SeqC GARFIELD THE

CORRECT (Score=24)
SegA GARFIELD THE

SegB GARFIELD THE

SeqC GARFIELD THE

LAST
FAST

VERY

LAST
FAST

VERY

FA-T CAT
ERP e
FAST CAT

FA-T CAT

FA-T CAT
—-——— CAT
FAST CAT

FA-T CAT

Adapted from Cedric Notredame



Multiple sequence alignment:
consistency

e generally use a database of both local high-
scoring alignments and long-range global
alignments to create a final alignment

 These are very powerful and very accurate
methods

« Examples: T-Coffee, Prrp, DiAlign, ProbCons

Credit by B&FG 3e, Jonathan Pevsner



Mixing Heterogenous Data With
T-Coffee

Local Alignment [Global AIignment]

ﬁ\/lultiple Alignment]

Specialist

Sequence

Adapted from Cedric Notredame



www.tcoffee.org

T COFFEE

History Tutorial References Contacts

T-Coffee

A collection of tools for Computing, Evaluating and Manipulating Multiple Alignments of DNA, RNA,

Protein Sequences and Structures

Alignment

T-Coffee
M-Coffee
R-Coffee
Expresso

PSI-Coffee

TM-Coffeo

Pro-Coffee
Accurate

Combine

Evaluation
Core
IRMSD-APDB
T-RMSD
Other

Advanced

Aligns DNA, RNA or Proteins using the default -Coffee -> Cie

Aligns DNA, RNA or Proteins by combining the output of popular aligners => Cite

Aligns RNA sequences using predicted secondary structures >> Cite

Aligns protein sequences using structural information >> Cite

Aligns distantly related proteins using homology extension (slow and accurate) -- Cit=
Aligns transmembrane proteins using homology extension & Cite

Aligns homologous promoter regions GES Clie

Automatically combine the most accurate modes for DNA, RNA and Proteins (experimental!)

Combines two (or more) multiple sequence alignments into a single one Cite

Evaluates your Alignment and outputs a Colcred version indicating the local reliability.
Evaluates Multiple Sequence Alignment using structural information with APDB and iRMSD.

Allows fine-grained structural clustering of a given group of related protein domains GEE

Run your alignment using full featured T-Coffee options. QCite




Constrained MSA

TITLE

Go;;:agle Scholar CITED BY YEAR

Constrained multiple sequence alignment tool development and its application to 91 2002

RNase family alignment
CY Tang, CL Lu, MDT Chang, YT Tsai, YJ Sun, KM Chao, JM Chang, ...
Bioinformatics Conference, 2002. Proceedings. IEEE Computer Society, 127-137

HERNGREE = e e BB SIS ENERKICIAMA H-RNase3 —RP--PQF FAIGH S-L-NPP---R--Jr IAMRAT-~~NN--Y--R ONTF
R e e KPROFTHINE ETGHINMT SOGITNAMOY H-RNase2Z MKP--PQF ETQHT N-M-TSQ~=~Q-—{ITNAMQV T~~~ NN-~¥~QR~HJHNQNTF
BP-RNASER, s-—setmsmimossassiitonesss KETARRKFERGHMDS STSRASS SN YGNOMMKS BP-RNaseA -KETAA----RAK-FER: SSTSARS SSNY[-N--QMMKSRN-—--LTKD-HJHEVNTE
BOCHNABE] oot e e KE SAARKFERGHMDSGNS PSSS SNYGNTMMCC BS-RNase —KESRA-———AK-FER SGNSPSSSSNYI}-N--LMMCCRK-—-MTQG-HAHEVNTE
H-RNaseR MALEKSLVRLLLLVLILLVLGWVQPSLGKESRRKKFQR SDSSPSSSSTYINQMMRR H-RNaseA -KES—-R----AKAFQR SDSSPSSSS N--QMM-RRRN--MTOG-HAHevNTE
H-RNaged — —————=————r——————————————-MODGYORFLRGHVHPEET-GGSDRYGNLMMOR H-RNase4  -MQDGMY---QR-FLROHVHPEET--GGSDRY|]-N--LMMQRRK---MTLY-HJHRENTF
REERasR, seeemcm e aesT e s QNWATFQOKHI INTPTIN=--=-JQNTIMDON RC-RNase —-XN-W----A-TFQQKHI -~ I-NT- PIIN--{-N--TIM--DNNIYIVGG-QJ{RVNTE
H-RNase3 - INNYRWAORNONTE LRTTEANVVNVSNQSIRCPHNRTLNNCHRSRERV PLLHCPLINE H-RNase3  LRTTFANVVNVIENgs1ResNRTLNNMGHR sRERV PL-LHF-DLINE-GRAQNISNRYAD
H-RNaseZ - INNYQRRKNQNTFLLTTFANVV NENMTP SNKTRKMCHHS GSQV PLTHONLTTP H-RNase2 LLTTFANVV NP SNKTRK SGSQVPL-THI-NLTTP-SPONTSMORYAQ
BE-RNaseR. “RNLTRDRCKEVNTEVHESLANVOAVGEOKNY NGENGOT = N @S XS THSL 16 BP-RNaseA VHESLADVQAVIEQOKNVAJK-N-GOTNLQSY STMSI-Td-RET-GSSKYP--NRY-K
B5-RNase  -~REMIQGHUKPVNTEVHESLADVKAVGS QKKVICRNGOT—NGE QS KSTMRI ETGS BS-RNase VHESLADVKAVIEQKKVTIK-N-GQTNQSKSTMRI-TIJd-RET-GSSKYP--NRY-K
H-RNaseA -RNMTQOGRKPVNTFVHEPLVDVQ QERV NGQG—— KSNSSMHI TNG H-RNaseA VHEPLVIDV(Q QERV -N-GQG SNSSMHI-T RLTNG-SRYP-— Y-R
H-RNased —RRKMTLYHCKRENTF IHEDIWNIRS TTNI NGKM-- EG——VVRV DTGS H-RNased IHEDIWNIRS TTNI ~N-G ~—GVVKV-T RDT-GSSRAP-- Y-R
RC-RNase  NIYIVGGHOKRVNTFIISSATTVK G~ ~VINMN--—-——-VLSTTREFQLN TSI RC-RNase  IISSATTVKAIL};-TGV-I-—N--M-NVL-STTRFQLNT-JTR-TSI-TP-R—-PPY—~
H-RNase3 GAQNIS YADRPGRRFYVV NRDPR-DSPRYPVVP DL H-RNase3 R-PGR-RFYVV, NRD-PRDSPR-YBVVP DTTI-——-—

H-RNase2 SPONIS YAQTPANMFYIV NRDQRRDPPQYPVVP RII-—-—- H-RNase?2 T-PAN-MFYIV. NRDQRRD~-PPQY PVVP D-RI===—

BP-RNaseA S--KYP YKTTQANKHIIV GN-————-———-—PYVP DASV-———— BP-RnaseA TTQAN-KHIIV. G-———-N-——PY-—-VP' DASV-———

BS-RNase S--KYP YKTTQVEKHIIV. e PSVP DASV———= BS—-RNase TTOQVE-KHIIVAGG———— K———PS——VP DASV————

H-RNaseR  S-—RYPNCRYRTSPKERHIIVAQEGS-————-———- PYVPHFDASVEDST H-RNaseR TSPKE-RHITVAIEG-—-—- §——— BY ——VEVHF DASY ————

H-RNased S==RAP YRAIASTRRVVI GN=========PQVP D= H-RNased AI-ASTRRVVI Q=== N---PQ--VP D=G=—==-=

RC-RNase T-—PRECPYSSRTETNYICVHOEN-————————— QYPYHFAGIGRCP- RC-RNase  SSRTETNYICVKE--——-—- N---QY-—-PVHF-AGIGRCP

Fig. 1. The multiple sequence alignment of seven RNases by WorkBench 3.2: The key active site Fig. 2. The multiple sequence alignment of seven RNases by our CMSA: The key active site
residues homologous to His12, Lys41, and His119 of BP-RNaseA, the cysteine residues responsible residues homologous to His12, Lysdl, and His119 of BP-RNaseA, the cysteine residues responsible

for disulfide bond linkage and two matched Gln residues are shown in boxes. for disulfide bond linkage, and two matched Gln residues are shown in boxes.




Homology extension approach

Chang, J.-M., Tommaso, P., Taly, J.-F. & Notredame, C.
Accurate multiple sequence alignment of transmembrane
proteins with PSI-Coffee. Bmc Bioinformatics 13, 1-7 (2012).



Homology-extended Sequence set
b
C
d
Quel: how't '
uel: how to /\‘
build a profile? > PSI-BLAST (Database(
E-value
Threshold
x10
Redundancy Filter

v

Pre-alignment profiles (pre-profiles)

A C
B D|
Que2: how to v
oo PROGRESSIVE
score profiles® MULTIPLE ALIGNMENT

Simossis VA, Kleinjung J, Heringa J: Homology-extended sequence alignment. Nucleic Acids Res 2005, 33(3):816-824.



Searching parameters

e Fast, Insensitive search
* High percent identity
e blastp —F “m S” —f 999 —M BLOSUMS80 -G 9 —E 2 —e 1e-5

e Slow, Sensitive search

* Increase sensitivity, decrease specificity

+ blastp —F “m S” —f 9 =M BLOSUM45 —e 100 —b 10000 v 10000
« BLAST, page 146, 147 BLAST

e By lan Korf, Joseph Bedell, Mark Yandell
* Publisher: O'Reilly Media
e Release Date: July 2003

An Exseniial Guide to the Basic Lucal Alignment Search Tool

O’REILLY‘ Jeht Korf. Mark Yandell & Joseply Bodell



http://www.oreillynet.com/pub/au/1087
http://www.oreillynet.com/pub/au/1089
http://www.oreillynet.com/pub/au/1088
https://www.safaribooksonline.com/library/publisher/oreilly-media-inc/%3Futm_medium=referral&utm_campaign=publisher&utm_source=oreilly&utm_content=catalog&utm_content=catalog

Database Size

Data Set No.
NCBI non-redundant (NR)
UniProt (release 15.15 — 2010) UniRef50-TM 87,989
° [ ]
"o UniRef90-TM 263,306
¥ -

| PrOth UniRef100-TM 613,015
UniProt-TM 818,635
UniRef50 3,077,464

UniRef50 UniRef90 UniRef100
UniRef90 6,544,144
UniRef100 9,865,668
S0 [ Unine0 | uninefioo | Unirot UniProt 11,009,767
NCBI NR 10,565,004

keyword:"Transmembrane [KW-0812]"




Performance comparison of different database sizes
for the BAIIBASEZ2-ref7.

 UniRefb0-TM contains about 100 times fewer sequences than the full
UniProt.

« The level accuracy is comparable and even superior to that achieved with
the default PSI-Coffee while the CPU time requirements are dramatically
decreased by a factor 10.

database # of seqs SP TC extension(s) total(s)
default T-Coffee 0 0911 0.498 0 2,735
UniRef50-TM 87,989 0.916 0.561 1,483 8,177
UniRef90-TM 263,306 0.918 0.548 3,343 9,610
UniRef100-TM 613,015 0.925 0.545 6,499 12,111
UniProt-TM 818,635 0.923 0.536 7,871 13,285
UniRefS0 3,077,464 0.920 0.553 19,087 26,442
UniRef90 6,544,144 0.924 0.561 40,448 46,478
UniRef100 9,865,668 0.922 0.554 66,696 71,895
UniProt 11,009,767 0.923 0.563 66,964 72,199
NCBI NR 10,565,004 0.921 0.554 65,201 70,375
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2.1 Enumerating trees and
selecting search strategies



# of rooted and unrooted trees: 3 OTUs

For three operational taxonomic
}3 units (OTUs) there is one possible

unrooted tree.

Any of the three
} >_ edges can be selected

to form a root.

Three rooted trees
r_| _‘ are possible.

1 2 3 1 3 2 2 3

B&FG 3e Fig. 7.10 Page 264




# of rooted and unrooted trees: 4 OTUs

1

3 >_< >_< For 4 OTUs there are three
; . ; ‘ possible unrooted trees.

> X
>
>

1 2 3 4 1 3 2 4 1 4 2 8

For 4 OTUs there are |5
possible rooted trees.

o
>

1 3 2 4 1 4 2 3

> >
o
>

There is only one of these 15
/)>\ /)X /)>\ trees that accurately describes
s 12 4 32 1 4 S04 the evolutionary process b)’
/>>\ /}>\ /)X which these four sequences
evolved.

; B&FG 3e Fig. 7.11 Page 265



TU(A): the # of unrooted tree for ntaxa

n=2 ! 51 84— 85, Let E(k) denote the # of edges in the unrooted
tree for k species.
n=3 1 51 S9 E(k) =2k —3
Let TU(k) denote the # of unrooted trees for k
species.
S3 TU(k) =TU(k —1)XE(k—1)
. \ | | = (TU(k — 2)XE(k — 2))xE(k — 1)
) ‘ S1 S3 k-2
:>._.< } B P
§ . 1
‘ :>_<: - k-2
$3 S4 = (2k — 21 — 3)
S1 S =i
>_< = (2k — 5)x ---x5%x3x%x1

Credit by Z=52[6] 5T H A2



7U(k) function

TU(K) = 1x3x5% X (2k = 5)

| 1X2X3X4X5X X (2k — 6)x(2k — 5) 4 3
- 2x4x --X(2k — 6) 5 15
6 105
B (2k — 5)!
—(2x1)Xx(2x2) - (2% (k = 3)) / 945
8 10395
B (2k — 5)!
T (2x2X -x2)X(1x2x% ---x(k — 3)) : 135,135
10 2,027,025
2k -5)!
-~ 2k=3(k = 3)!
20 ~2x10%°




TR(k): the # of rooted tree for A species

1 1

TR(k) =TU(k)x(2k — 3)

=TU(k)XE (k)

=TU(k+ 1) 2
3 1 3
4 3 15
5 15 105

10 2,027,025 34,459,425
20 ~2x10%° ~8 x 10%1

Credit by (5] 5+ HE AV



Stage 1: Use of DNA, RNA, or protein

* For phylogeny, DNA can be more informative.

* Some substitutions in a DNA sequence alignment can be directly
observed: single nucleotide substitutions, sequential substitutions,
coincidental substitutions.

* Additional mutational events can be inferred by analysis of ancestral
sequences.




Two sequences (human and mouse) and their common ancestor:
we can infer which DNA changes occurred over time

ancestral beta globin

mouse beta globin human beta globin
ancestral M Vv H L S8 P V E XK S A V .
uman M Vv H L T P E E K S A V protein
mouse M v H L T D A E K ] A \4

ancestral 5’ ATG GTG CAT CTG AGT CCT GTT CAG ARG TCT GCT GTT 3’

human 5¢ ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT 3 D N A
oTmmEmmmesETe
A A A AA
G G—C G— C CC | parallel substitutions
T T IF TT
G G cC— G CG | single substitution
C C C— T— A CA | sequential substitution
T 1y I TT
G G G GG
T T—A T—C AC | coincidental substitutions
T =G T GT
C C—G C— T— G GG | convergent substitutions
A A A AA
G G—T—G G GG | back substitution
ancestral globin  human globin mouse globin observed  Substitution mechanism
(hypothetical) alignment

B&FG 3e Fig. 7.15 Page 269



Stage 2: Multiple sequence alignment

|. Confirm that all sequences are homologous

2. Adjust gap creation and extension penalties as needed to optimize the
alignment

3. Restrict phylogenetic analysis to regions of the multiple sequence
alignment for which data are available for all taxa (delete columns
having incomplete data).




Stage 3: models of DNA and amino acid
substitution

* The simplest approach to measuring distances between sequences
e align pairs of sequences

e count the number of differences.

* For an alignment of length N with n sites at which there are differences,
the degree of divergence D is (Hamming distance)

eD=n/N

* But observed differences do not equal genetic distance!

* Genetic distance involves mutations that are not observed directly.




number of steps required

nucleotide step matrix

)

to change a character

Step matrices

(b)

A C D EF GH I K L MNP QRS T V W Y

amino acid step matrix
For amino acids, between 1 and 3
nucleotide changes are required to
change one residue to another.

N AN AN NN

NHAMANNEAMMON A

AN HAH A A AN A NA

NN A AN

o NN AN H N

A NN A A AA

NN MmN AN A A

NN NN A NN A

NN AN A A AN
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NMANHMANANHO
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NN H NN O
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N Nmo

- MmO

- N O

o o

(=]

M A NN AN O

NMANN-A 0NN O

H N NN OO

AN A A O

NN O

HNHAHO

NN~ O

NN o

N O

o

AL AOMMOTHMA

220K B> ™

B&FG 3e Fig. 7.16 Page 271



Quantification of
evolutionary distances



Evolutionary Distances

 They measure the total number of substitutions that occurred on
both lineages since divergence from last common ancestor.

e Divided by sequence length.

« Expressed in substitutions / site

ancestor

sequence 1  sequence 2




The problem of hidden or multiple changes

D (true evolutionary distance) > fraction of observed differences (p)
A C G A
AAA K
A G A G A A A G
« D= p+ hidden changes

« Through hypotheses about the nature of the residue substitution
process, it becomes possible to estimate Ofrom observed
differences between sequences.




Correcting for multiple substitutions

CT T cCAZC
AT AATAT

Substitutions

Differences




Correcting for multiple substitutions

e Requires a statistical ‘model’ of how the process of substitution
works to correct for

 Differences in the rates of different substitution types
e Jukes and Cantor — all substitutions are treated the same

e Kimura 2-parameter model — distinguishes between transitions and
transversions

* Different frequencies of different nucleotides

* GC content — the HKY model adds nucleotide frequency parameters to
the Kimura 2-parameter model

* Different rates at different sites (often modelled using a
distribution — e.g. Gamma distribution)




Stage 3: Jukes and Cantor one-parameter
model of nucleotide substitution

* This model describes the probability that one nucleotide will change into another. It
assumes that each residue is equally likely to change into any other.

* Jukes and Cantor (1969) proposed a corrective formula:

o=(-3m(-3)




JC model: D = (—%) In (1 —%p)

* Consider an alignment where 3/60 aligned residues differ
* The normalized Hamming distance, 3/60 = 0.05.

* The Jukes-Cantor correction is
D= 3)1 (1 4005)—0052
= 4 n 3 — U.

* When 30/60 aligned residues differ, the Jukes-Cantor correction is

more substantial:




Two DNA substitution mutations

e Transitions: interchanges of two-ring purines or of one-ring
pyrimidines : they therefore involve bases of similar shape.
* A<—>G,C<—>T

« Transversions: interchanges of purine for pyrimidine bases,
which therefore involve exchange of nne- rmﬁ and two-ring
structures. T w

f“}ﬁc
* A<—>C, A<—>T,G<—>C,G<—>T

& ,J=\C) /c
.9 Tnnmnlom o)




Kimura two-parameter model of nucleotide
substitution (assumes a # b)

A ‘ G
>
<
<
A A




Kimura’'s two parameter distance (DNA)

* Hypotheses of the model

* All sites evolve independently and following the same process.

 Substitutions occur according to two probabilities
* Transitions : G <—>A or C<—>T
* Transversions : other changes

* The base substitution process is constant in time.

* Quantification of evolutionary distance (d) as a function of
the fraction of observed differences p: transitions, g:
transversions

ed = —%ln[(l —2p —q)J1— Zq]

Kimura (1980) J. Mol. Evol. 16:111



There are dozens of models

Jukes-Cantor model Kimura model Tamura model
(b) o (C) (191
A e A = \ > G
A A Al X B6, “02 A
B
B ¥ Pos|| B2 Bo
B
Y b
i -
' o . ! 064 Y
T = i -

B&FG 3e
_Fig. 7.20




Substitution model categories

GTR: 6 substitution types, unequal base frequencies

3 substitution types
(transversion, 2 Equal base frequencies
transitions)

TrN SYM

3 substitution types
(transition, 2 transversions)

2 substitution
types transversion,

transition)
HKYS85 / F84 TrN
Single \ 2 substitution types
substitution Equal base transversion, transition)
type frequencies N

F81 K2Pp Note: there are also

Equal ba_S\ ﬁn ole models for codon and
frequencies substitution amino acid data

JC ies




Stage 4: tree-building methods

distance-based
maximum parsimony
maximum likelihood

Bayesian methods



Main families of Methods for Phylogenetic
reconstruction

COMPUTATIONAL METHOD

Optimality criterion Clustering algorithm
¢ PARSIMONY
3
§ MAXIMUM LIKELIHOOD
n
W
o o BAYES INFERENCE
[
<
-
o UPGMA
(o] 8 MINIMUM EVOLUTION
1‘5:3 NEIGHBOR- JOINING
v LEAST SQUARES
Q Q FITCH & MARGOLIASH

Adapted from Cedric Notredame



UPGMA

Unweighted Pair-Group Method with
Arithmetic Mean



Tree-building methods: UPGMA

* Step 2: Find the two proteins with the smallest pairwise
distance. Cluster them.

e

&FG 3e Fig. 7.24 Page 284

B




Tree-building methods: UPGMA

* Step 3: Do it again. Find the next two proteins with the
smallest pairwise distance. Cluster them.

e

B&FG 3eFig. 7.24 Page 284




Tree-building methods: UPGMA

* Step 4: Keep going. Cluster.

> o

B&FG 3e Fig. 7.24 Page 284




Tree-building methods: UPGMA

* Step 4: Last cluster! This is your tree.

e -

A 1 2 4 5 3

B&FG 3e Fig. 7.24 Page 284
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Distance-based methods: UPGMA trees

* UPGMA is a simple approach for making trees.

* An UPGMA tree is always rooted.

* An assumption of the algorithm is that the molecular clock is constant
for sequences in the tree. If there are unequal substitution rates, the tree
may be wrong.

* While UPGMA is simple, it is less accurate than the neighbor-joining
approach (described next).




Neighbor-Joining

N Saitou, M Nei, The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Molecular Biology and
Evolution, Volume 4, Issue 4, Jul 1987, Pages 406-425



Saitou, N. & Nei, M. Mol. Biol. Evol. &4, 406-425 (1987).

Number 20 on the list is a paperi2 that introduced the “neighbor-joining”
method, a fast, efficient way of placing a large number of organisms into a
phylogenetic tree according to some measure of evolutionary distance
between them, such as genetic variation.

It links related organisms together one pair at a time until a tree is
resolved. Physical anthropologist Naruya Saitou helped to devise the
technigue when he joined Masatoshi Nei’s lab at the University of Texas in
Houston in the 1980s to work on human evolution and molecular genetics,
two fields that were starting to burst at the seams with information.

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3


http://www.nature.com/news/the-top-100-papers-1.16224

Saitou, N. & Nei, M. Mol. Biol. Evol. &4, 406-425 (1987)

Another field buoyed by the growth in genome sequencing is
phylogenetics, the study of evolutionary relationships
between species.

“We physical anthropologists were facing kind of the big data
of that time,” says Saitou, now at Japan’s National Institute of
Genetics in Mishima. The technique made it possible to
devise trees from large data sets without eating up computer
resources. (And, in a nice cross-fertilization within the top-10,
Clustal’s algorithms use the same strategy.)

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3



Why NJ instead of UPGMA?

In the original CLUSTAL programs, the initial guide trees, used to guide the
multiple alignment, were calculated using the UPGMA method.

We now use the Neighbour-Joining method which is more robust against
the effects of unequal evolutionary rates in different lineages and which
gives better estimates of individual branch lengths.

This is useful because it is these branch lengths which are used to derive
the sequence weights.

We also allow users to choose between fast approximate alignments or
full dynamic programming for the distance calculations used to make the
guide tree.

| Thompson, J. D., Higgins, D. G. & Gibson, T. ]. CLUSTAL W: improving the sensitivity of progressive multiple sequence alighment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 467380 (1994).



Making trees using neighbor-joining

 useful for making a tree having a large number of taxa.
* Begin by placing all the taxa in a star-like structure.

8 d , d‘
~ ' \
~ 1] N
N ' N
\ i -
-

Credit by https://en.wikipedia.org/wiki/Neighbor joining


https://en.wikipedia.org/wiki/Neighbor_joining

The algorithm

« Based on the current distance matrix calculate the matrix O.

« Find the pair of distinct taxa /and jfor which O(/ ;) has its
lowest value. These taxa are joined to a newly created node,
which is connected to the central node.

« Calculate the distance from each of the taxa in the pair to this
new node.

e Calculate the distance from each of the taxa outside of this pair
to the new node.

« Start the algorithm again, replacing the pair of joined neighbors
with the new node and using the distances calculated in the
previous step.

Credit by https://en.wikipedia.org/wiki/Neighbor_joining


https://en.wikipedia.org/wiki/Neighbor_joining

The algorithm

1. Based on the current distance matrix calculate the matrix O.

2. Find the pair of distinct taxa 7and jfor which O(/ ;) has its
lowest value. These taxa are joined to a newly created node,
which is connected to the central node.

3. Calculate the distance from each of the taxa in the pair to
this new node.

4. Calculate the distance from each of the taxa outside of this
pair to the new node.

5. Start the algorithm again, replacing the pair of joined
neighbors with the new node and using the distances
calculated in the previous step.

Credit by https://en.wikipedia.org/wiki/Neighbor_joining



https://en.wikipedia.org/wiki/Neighbor_joining

The matrix 0

1. Based on the current distance matrix D calculate
the matrix O.

* Q) = (n—2)d(i,)) — Zk=1d(, k) — Xk=1d(n k)

D| a|b|c|d|e Q| a b C d e
alo|ls|9]9]s a —50 | —38| —34 | —34
b|s5|o|10|10]9 b | —50 —38 | —34 | —34
A RIDIDREl Ld N E —40 | —40
d 9 10 8 0 3 d | —34 —34 —40 —48
e|l8l9|7|3]|o0 o | —34|—34|—40|—48

Credit by https://en.wikipedia.org/wiki/Neighbor_joining



https://en.wikipedia.org/wiki/Neighbor_joining

Join two nodes

2. Find the pair of distinct taxa /and jfor which O(/ ;) has its
lowest value. These taxa are joined to a newly created node,
which is connected to the central node.

« Merge nodes aand binto u b /
S0 ¢
Q, a b c d & /:x:\-"'
a —50 | —38 | —34 —34
b | —50 —38 | —34 —34 A
c —38 —38 —40 | —40 ’
d  —34 —34 —40 —48 3 *d
e —34 —34 —40 —48 VAN

Credit by https://en.wikipedia.org/wiki/Neighbor_joining


https://en.wikipedia.org/wiki/Neighbor_joining

Distance from the new node

« 3. Calculate the distance from each of the taxa in the pair to this new
node. i.e, Merge nodes fand ginto v

- 8(f,u) =5d(f, g)+2( —

* §(gw) =d(f,g9) —6(f,w)
« Example: Merge nodes aand b into v

.« 5(a,u) =§d(a,b)+2(5 — [ZRe1d(@ k) — 2o, d (b, )] =

e 6(bu)=d(a,b) —6(a,u)=5—2=3

[Xk=1d(f, k) = Xi=1d(g, k)]

431734

a|/b|c|d]|e Y c,
/

a|0|5|9|9]|8s b !
1

b 5 0 10 10|09 /
3 ’ d
c| 9|1 0|8 7 u___loa----

2 \

d| 9 10| 8 3 \
\

a \

e|8|9 |7 (3|0 N

Credit by https://en.wikipedia.org/wiki/Neighbor_joining



https://en.wikipedia.org/wiki/Neighbor_joining

Distance of the other taxa from the
new node

e 4. Calculate the distance from each of the taxa outside of this pair to the new node.

« d(w k) = [d(f, k) + d(g, k) — d(f, 9)]
« Example: Merge nodes gand binto u
» d(u,c) =[d(a,c) + d(b,c) —d(a,b)] =2 =
+ d(u,d) = 2[d(a,d) +d(b,d) — d(a,b)] = Z—==7

2

+ d(ue) ==[d(ae) +d(be) —d(ab)] ===6

2

7

a|lbl|lc|d]|e u C d &
alo|5|9|9o]s . AT
b|5|0|10[10]9
c 7 0 8 7
c|lolwo|lols]|7 ‘
d| olo|s|o] a3 d| 7|8,0)|3
e | 8/ 9|7 1|3]|0 e 6 Z| 3| 0

Credit by https://en.wikipedia.org/wiki/Neighbor_joining



https://en.wikipedia.org/wiki/Neighbor_joining

Repeat

hH. Start the algorithm again, replacing the pair of joined
neighbors with the new node and using the distances
calculated in the previous step.

ul/ c d| e Q, wu c d e
O| 7|7 | 6 u —28 | —24 | —24
7/0| 8|7 # c | —28 —24 —24
7| 8| 0| 3 d | —24|—24 —28
6| 7| 3| 0

Credit by https://en.wikipedia.org/wiki/Neighbor_joining



https://en.wikipedia.org/wiki/Neighbor_joining

Maximum Parsimony
Method




Tree-building methods: character based

* Rather than pairwise distances between proteins, evaluate
the aligned columns of amino acid residues (characters).

* Tree-building methods based on characters include

* maximum parsimony

* maximum likelihood




Maximum Parsimony (MP)

* Find the tree with the shortest branch lengths possible.
Thus we seek the most parsimonious (“simple”) tree.

e |dentify informative sites.

e Constant characters are not parsimony-informative.

e Construct trees, counting the number of changes required
to create each tree.

e <=12 taxa : evaluate all possible trees exhaustively
e >12 taxa : perform a heuristic search.

e Select the shortest tree (or trees).




An example of tree-building using MP

* Consider these four taxa
AAG
AAA
GGA
AGA

 How might they have evolved from a common ancestor such
as AAA?




MP

* Choose the tree(s) with the lowest cost (shortest
branch lengths)

AAA 1 AAA

1FA_‘/1FK‘ 1F |ﬂx‘2 1FA_‘2 |ﬂx‘1

AAG AAA GGA AGA AAG AGA AAA GGA AAG GGA AAA AGA

Cost = 3 Cost=4 Cost =4




Select the tree supported by the largest
number of Informative Site

Site
Sequence 1 2 3 4 5 ¢ 7 8 g Site5,7and9are informative site
1 A A G A G T G C A
2 A G € € G T G- C G
3 A G A T A T C C A
4 A G A G A T C C G
* * *
(@) 1G el A3 1G . Cc2 1G e C2 For SiteS:
Site3 >G * A< P *< >‘ I< e Tree Il and lll require 2
2C Ad 3A A4 4A A3 Changes
(b) 1A T3 1A = Cc2 1A . C2 . .
Site 4 Nc_e T/. e C/. ‘\A o« ol Tree | requires 1 change
2C G4 3T G4 4G T3
(c) 1G A3 1G . . G2 1G . B G2
Site 5 G——A \A A A A
2G A4 3A/ A4 4A A3

Credit by Z=5[F] 5T HE AV



Maximum Likelihood
Method




Making trees using maximum likelihood

* An alternative to maximum parsimony.

* What are the tree topology and branch lengths that
have the greatest likelihood of producing the

observed data set?

* ML is implemented in the TREE-PUZZLE program, as
well as MEGAS5, PAUP and PHYLIP.




Likelihood

« Given some data (D) a decision must be made about
an adequate explanation (A, hypothesis)

* D:alignment

* H: Model of evolution, tree topology, branch lengths,
parameters of the model

e [=Pr(D|H)

e Each H will have a certain probability of producing the
data




Likelihood vs Probability

e https://youtu.be/pYxXNSUDSFH4

e The likelihood function = the probability of a
hypothesis being correct!

e The likelihood function is defined in terms of
probability of producing the observed events not of
the unknown parameters

e Thus: the probability of observing the data has
nothing to do with the probability that the underlying
model is correct.



https://youtu.be/pYxNSUDSFH4

Maximum Likelihood

e https://youtu.be/XepXtl9YKwc

« Given some data (D) a decision must be made about
an adequate explanation (A, hypothesis)

e [=Pr(D|H)
e Each H will have a certain probability of producing the
data

 The best His that of the greatest #



https://youtu.be/XepXtl9YKwc

Coin Example

* Data: flipping coins and counting the number of times
“heads” appear
* You throw the coin twice and observe “heads” both times.

* Hypotheses : You might have two hypotheses to explain
these data.
* H,, the coin is normal: p = 0.5, of appearing head.

* H,, the coin is rigged with an 80% chance of getting a head , p
=0.8.

 What is the likelihood of H;?
 What is the likelihood of H,?




Likelihood of the coin example

* The probability of observing “heads” in each of
two flips
e under H1, L(data|H1) = 0.5x0.5 =0.25
e under H2, L(data|H2) = 0.8 x 0.8 =0.64

* Since the probability of observing the data under
H2 is greater than under H1, you might argue that
the “rigged” coin hypothesis is the more likely.




Parameter Estimation

* Assuming sample x;, Xx,, ..., X, is from a parametric
distribution f(x|8), estimate 6.

* Given sample HHTHH of (possibly biased) coin flips,
estimate O = probability of Heads

 Pr(HHTHH | .6) > Pr(HHTHH | .5), event HHTHH is more
likely when 6 = .6 than 8 =.5

* And what 6 make HHTHH most likely?




Likelihood Function

e Probability of HHTHH, given 9:

"o | otwe)

0.08

020  0.0013 «,
0.50  0.0313 .
0.80  0.0819 Pz
0.95  0.0407

0.02

0.00




Maximum Likelihood Parameter
Estimation

e As a function of 8, what 8 maximizes the likelihood
of the data actually observed by taking derivative of
[ (Pr) with respect to 6

% — 403 — 50* = 93(4 — 50)

e equating to 0, and solving
dL

4
Y Ap3 _cp4 — p3(a _ — — _
70 40 560 6°(4—-50)=0-6 c

 More easily, likelihood are often maximized by
maximizing their logarithm
InL=4In6 +1In(1-06)
* whose derivative is
dlnL_4 1

4
0 5 1-¢ 270753




First use in phylogenetics

« Cavalli-Sforza and Edwards (1967) for gene frequency data
« Felsenstein (1981) for DNA sequences
* |n phylogenetics, the hypothesis is

* atree topology
* its branch-lengths
* a model under which the data evolved

Sheep Goat Branch-lengths as expected numbers of substitutions per site
0.10 0.14
0.32
0.05 0.08

Cow Bison




Maximum Likelihood Method(con’t)

s homologous sequences each with /Vnucleotides

Xi=(X1...,X.0) the nucleotide configuration at Ath site
The likelihood function of tree 7 at the Ath site

The likelihood function for the entire sequence for tree 7

N
L(6y, ..., 0p|X1, ... Xy, T) = Hf(ka, T)
k=1




An example

« The model is reversible, ie. p(A—>G) = p(A—G), so
the root can be placed at any node

 Pattern probability = p(G »5G) x p(G -G) x p(G —A)
x p(A >A) x p(A >A)

A A

Credit by Joe Felsenstein, Maximum Likelihood and model selection



Site pattern probability

* Under the simple Jukes-Cantor model, all base
frequencies=0.25, all substitutions equally probable.

p. 0.25+ 0.75e72,i = j
Y1025 —-0.75e7b,i £ j
(subs/site) A A

* Where b =0.5, P; (i=j) = 0.7049, P;(i#]j) = 00984

e Site pattern probability
A
= p(G —>G) x p(G =>G) x p(G —>A) x p(A >A) x p(A —>A)
= 0.7049 x 0.7049 x 0.0984 x 0.7049 x 0.7049
= 0.0243 Root

,Where bis branch—Ilength

Credit by Joe Felsenstein, Maximum Likelihood and model selection



The likelihood of a tree

e The likelihood of a tree =
the product of the site
likelihoods

* Taken as natural logs, the site
likelihoods can be summed to give
the log likelihood

« The sum of the probabilities
for the 16 possible site
patterns = 0.0333

« Hence, the site —InL = 3.402
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Credit by Joe Felsenstein, Maximum Likelihood and model selection




the ML tree with the highest likelihood

e The tree with the highest likelihood (lowest —In.)
e Tree 2 is the ML tree by 8.801 —InL units(=2052.456-2043.655)

Site -1nL(1) —-1nL(2)
1 2.457 2.891
2 1.568 1.943
1206 2.541 1.943

2052 .456 2043.655

Credit by Joe Felsenstein, Maximum Likelihood and model selection



Phylogenetic Relationship of CoVs

SARS-CoV-2 vs Pangolin-CoV vs BatCoV-RaTG13

Consensus phylogenetic tree | Five key amino acids for ACE2 | Potential furin recognition motif
by whole genome & multiple gene markers |in the receptor-binding domain (RBD) of | in the S1/S2 cleavage site for viral entry
$1 subunit of the spike (S) protein

Four mutations Yes
J L-L-Y-D-H 685PRRARSVe91

SARS-CoV-2 .
458 -488F-495Q
503N-507Y N°_
SRSV
RaTG13
A v& No
Pangolin-CoV L-F-Q-N-Y SRSV

| Zhang, T., Wu, Q. & Zhang, Z. Probable Pangolin.Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biology Cb 30, 1346-1351.e2

(2020).



If you build a tree,

Clustal Dalign

Muscle ProbCons T-Coffee
Which guy should | trust?




panel D). Most studies 1gnore that these scores

are based on a fixed sequence alignment that
supports the tree in the first place; they may

thus make us overly confident of its accuracy.

Ari Loytynoja and Nick Goldman, “Uniting Alignments and Trees,” Science 324,
no. 5934 (June 19, 2009): 1528 -1529.




YPLO/7C with six topologies

CLUSTAL/DIALIGN (0.24) MUSCLE (0.25) T-COFFEE (0.30)
Smik  Scas Skud S bay
S klu\ > ;|)ar /Skud S klu\ Serr S Tar > rik /S kud S par\ S r‘nik /Scas
/ N / N / N
S cer S bay S cas S bay S cer S klu
they have lower bootstraps
MAFFT (0.18) DCA (0.12) PROBCONS (0.05)
" Does bootstrap help us to determine non-unique topologies? N
S par S kKud S cas : > Kua > cas - S kud
N N I N
/ AN / AN

S cer S bay S par S klu Sklu S bay

Fig. 1. An example, involving ORF YPLO77C, in which alignments produced by seven different alignment methods produce six different estimated
trees, albeit with low bootstrap support (bootstrap proportions shown parenthetically for each tree).

Karen M Wong, Marc A Suchard, and John P Huelsenbeck, “Alignment uncertainty and genomic analysis”, Science 319, no. 5862 (January 25,

2008): 473-476.



Total citations

Rank: 41 Citations: 21,373

Confidence limits on phylogenies: an approach using the bootstrap
Felsenstein, J.
Evolution 39, 783—-791 (1985).
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Super multiple sequence alignment
(SMSA)

Clustal MAFFT T-Coffee

S. cer

S. par | | [N |

S. klu

S. cer

S. par‘ I * ¢ ¢

S. klu




SMSA

S. cer
S. par
S. klu

Clustal MAFFT T-Coffee

ANDREY ZHARKIKH AND WEN-HSIUNG LI

- for Demographic and Population Genetics, University of
P.O. Box 20334, Houston, Texas 77225

partial weighted

Zharkikh A, Li WH (1995) Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phylogenet Evol 4:

44—63. doi:10.1006/mpev.1995.1005.



Average bootstrap, AUC values and the number of TPs for 10 and 25
accepted FPs of each method

Method ave. Bootstrap AUC TPs for 10 FPs  TPs for 25 FPs TPs 1n total
Clustal 51.31 0.7521 185 274 643
DCA 50.62 0.7694 194 284 624
DIALIGN 51.94 0.7618 253 340 659
MAFFT 52.82 0.7750 253 359 665
Muscle 52.35 0.7771 224 315 639
Probnt 50.96 0.7790 256 312 642
T-Coffee 5121 0.7889 234 311 620
M-Coffee 5141 0.7688 193 325 646
SMSA 77.31 0.8301 329 425 661
pPSMSA 50.96 0.8140 342 385 661
wpSMSA 50.86 0.8215 353 423 661




OPOSSUM
BLOSUMG6 2

\ 4

aligners

v

OPOSSUM-— OPOSSUM—-
BLOS-UM62 BLO-SUM62




alignment uncertainty - data
OPOSSUM MUSSOPO

BLOSUM6 2 { 26MUSOLB
M

Landan G, Graur D (2007) Heads or Tails: A Simple Reliability Check for Multiple Sequence Alignments. Molecular Biology and Evolution 24: 1380 —1383.



alignment uncertainty - data

Alnl Aln2
OPOSSUM-- OPOSSUM--
BLOS-UM62 BLO-SUM62

OPO S SUM
\

If there are two paths

{

chooses low-road;

}

N O 2 C v O —~ @
—
N O 2 Cc v O w

Landan G, Graur D (2007) Heads or Tails: A Simple-Reliability Check for Multiple Sequence Alignments. Molecular Biology and Evolution 24: 1380

—1383.



alignment uncertainty - data

o [t gets worse with a multiple sequence alignment.

Alnl Aln2 Aln3 Aln4

BLOS-[UM45 BLO-SUM45 BL(O-SUM45 BLOS-UMA45
OPOSSUM-- OPOSSUM-- OPQSSUM-- OPOSSUM--
S—

BLO M62 BLOS-UM62 BLO-SUM62 BLO-SUM6 2

Telling apart Uncertainty parts of the alignment is
more important than the overall accuracy.




Guidance

RPILHCSQELENLFSPYCLVKSLQITFQLCLLVEVGVS-~GT-~REVLRIV---N--QLQYLGLTIFELLMPT
VHLVSLONDLNGIFGKSLLLSLLTTAAVICTVAVYTLI--QGP--TLEGFT---Y--VI-FIGTSVMQVYLVC
Base MSA QLLNGLCRKYNDIFKVAFLVSNFVGAGSLCFYLFMLSE--TS-~-DVLITIA---Q--YILPTLVLVGFTFEIC
ARALDLSEEVNNIFSFLILWNFIAASLVICFAGFQIT~~~ASN~~VEDIGV~~~Y-~FI-FFSASLVQVFVVC
QRIRSLTLTCORIVSPYILSQIILSALIICFSGYRLOH-~VGI-RD-~~~NPGQFISMLOFVSVMILQIYLPC
TXVRRLTRECEVLVSPYVLSQVVFSAFIICFSAYRLVH-~MGF-KQ-~~~RPGLFVTTVQFVAVMIVQIFLPC
NLIIDYAAAIRPAVIRTIFVQFLLIGICLGLSMINLLE-~FAD-~--IWTGL~~-~-A-~TVAYINGLMVQTFPFC
ALCLNLGHFLNEYFRPLIC-QFVAASLHELCVLCYQL-~--SAN-ILQPALL-~-F--YAAFTAAVVGQVSIYC
QRVWALVALLNRCYGLSMLMQVGNDFLAITSNCYWMFLNF~RQSAASPFDILQIVASGV~-WSAPHLGNVLVLS

Neighbor joining
bootstrap tree

|
reconstruction l l l l l

[ et | [ Tee2 | [ . ][ Tre99 | [ Tree100 |

_ l y J y v
progressive T vsa1 | [ msa2 ) [ .. ) [ msaw ) [ msaio )

alignment K /
hd

g CLUKBLQI TFQLCLLVFVGYS-~GT-~REVLRIV---N--QLQYLGLTIPELLMPT
’

LLLSLITTAAVICTVAVYTLI--QGE--TLEGEE---¥--VI-FIGTSVMQVYLVC
I'ilIiVGAGBLc!YLrMLsB--Ts-—-DVLIIA---Q--YILETLVLVG!TPI!C

llIAAvaxchcrozr---Asn--v:uxci---y--r: FFSASLVQVEVVC

R 98P YILE0ITLSALIICESGYRLOH-~VGT-RD -~~~ NPGOFISMLOFVSVNILQIYLRC
T lll"“ U8 P Y VLS OVVF SAF I ICFSAYRLVH-~NGF -KQ~--~RPGLFVITVOFVAVNIVOIFLPC
ERVBRELIGICLGLSMINLLF -~FAD--~INTGL-~-A-~TVAYINGLMVQTERFC
26-QRYAASLHLOVLCYQL----SAN-BLOPALL-~-F-~YAAFTAAVVGQVSTYC
SMEMOVGNDFLATTSNCYWMFLKF - RO SARSERDRHCT VASGY - WSAPHLGNVLVLS
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Confident (=)  Uncertain

"f-%

Penn O, Privman E, Landan G, Graur D, Pupko T (2010) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol

Evol 27: 1759-1767.



Gblocks trimAl
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Capella-Gutiérrez S, Silla-Martipk2 j\h Gabaldon T (2009) trimAl: a
tool for automated alignment trimmmé:i’rt&tgfgffabe phélogenetic
analyses. Bioinformatics 25: 1972-1973. y 00g/e

Talavera G, Castresana J (2007) Improvement of Phylogenies after

Removing Divergent and Ambiguous ﬁ&jegl locks from Protein
Sequence Alignments. Syst Biol 56: 564—-577. athn by ~




MSA
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consistency inconsistency inconsistency




MSA
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CLUSTAL W (1.83) multiple sequence alignment

1746_A MQ------ DRVKRP---MNAFIVWSRDQRRKMAL ENPRMRN--SETISKQL

2lef_A MH-------- TKKP---LNAFMLYMKEMRANVVAESTLKES--AAINQIL

1k99_A MKKLKKHPDFPKKP---LTPYFRFFMEKRAKYAKLHPEMSN--LDLTKIL

laab_ GK------ GDPKKPRGKMSSYAFFVQTSREEHKKKHPDASVNFSEFSKKC
. . X . . e

*'* . .

T

Residue level
Col row row TCS T-COFFEE, Version_9.01 (2012-01-27 09:40:38)

1 1 2 0.762 Cedric Notredame
[1 1 3 0.748:] CPU TIME:Q sec. .

1 1 4 @.741 SCORE=76 | Alignment level

1 2 3 0.651 ¥

1 2 4 0.677 BAD AVG GOOD

1 3 4 0.693 w

2 1 3 0.562 1j46_A 74

2 1 4 0.632 2lef_A : 75

2 3 4 0.526 1k99_A 77

- laab_ 72
cons : 76
1j46_A /5------ A566---6777777777777777777766060--7789999
2lef_A o-------- 566---677777777777777777777766--7789999
1k99_A  865454445667---777788887888888888877877--7789999
laab_ /6------ 5665333566676666666666666666655336789999

R ey 0T SALLLLLLI351 2256077 7680CCETTITTI0RE0532A3002000



Test? - structural modeling @ alignment
level

Guidence/TCS

reference alignment

Seqgl ..SALMLWLSARESIKREN..YPD..

Seqg?2 ..SAYNIYVSFQ--—--RESA..KD... ,
confidencel

Segn ..SAYNIYVSAQ-—---RENA..KD..

Seqgl ..SAILMLWLSARESIKREN..YPD..
Seq?2 ..SAYNIYVSF----QRESA..KD...

confidence2

Seqgn ..SAYNIYVSA----QRENA..KD..

SP1 —SP2 ? confidencel — confidence2




Guidance =71.10% TCS =83.5%
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Renewing Felsenstein’s phylogenetic
bootstrap in the era of big data

« transfer distance, (b,b*) : a branch b of the reference tree T and a branch b* of
a bootstrap tree T* is equal to the number of taxa that must be transferred (or

removed), in order to make both branches identical

 Felsenstein (FBP) and transfer (TBE) bootstrap supports on the same tree with
9,147 HIV-1M pol sequences

J J

S - =T .
07 :: . 7‘ > \\ -
51taxa 2 taxa ,‘@N ; 18% 51 taxa 2 taxa AR DI
STy ‘\ 448 taxa (Ow-0m} ((M-Om)%"_ i \§ 448 taxa
. g (13w-0m) f/ﬁ ; ~ (13w-0m)
> 7
S

807

230 B
29 160
ﬂ& = o 3 3559 taxa |:] 3559 taxa
@ (a4) D‘éﬁtﬁm f22.3572) (2w-0m) (A)-FBP >70%| “ ™ l';;"a‘t";‘” el (2w-0m) (B) - TBE > 70%

Lemoine, F. et al. Nature 556, 452—456 (2018).




Significantly different output when
changing sequence input order

« S-0-P comparison vs average identity (Spearman correlation rs = 0.79).
« a high MSA structural accuracy variability vs correlating with MSA

identity (rs = —0.51)

1001
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Maria Chatzou, Evan W Floden, Paolo Di Tommaso, Olivier Gascuel, Cedric Notredame, Systematic Biology, 2018




Regressive algorithm enables MSA of up
to 1.4 million sequences on

b Guide-tree C
Root

Sub-MSAs

Parent 6 11 14

Children 2 1 6 8 311 (13 12 14

2 1 8 45 3 11 8 180g) 7712 14 10 Grandchildren 6 4 11 8 13 9 7 12 14 10

Parent sub-MSA

= Merged MSA
m—

— ) — - —K L —

— W - - —

— Y - - - SE—

— | == J—K m==== | —K == L —

—_—y == -

— | J—K == L — K == —
=l
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— - -

Child sub-MSA

Edgar Garriga et al, Nature Biotechnology 2019
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