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1973

https://biologie-lernprogramme.de/daten/programme/js/homologer/daten/lit/Dobzhansky.pdf

若不採用演化論，生物學的一切都說不通

https://biologie-lernprogramme.de/daten/programme/js/homologer/daten/lit/Dobzhansky.pdf


Evolution

• Charles Darwin’s 1859 book (On the Origin of Species By 
Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life) introduced the theory of 
evolution. 

• At the molecular level, evolution is a process of mutation 
with selection. 

•Molecular evolution is the study of changes in genes and 
proteins throughout different branches of the tree of life. 
• Phylogeny is the inference of evolutionary relationships.



B&FG 3e Fig. 7.1 Page 247 

1960s: globin phylogeny

• tree of 13 orthologs by Margaret Dayhoff and colleagues
• Arrow 1: node corresponding to last common ancestor of a group of vertebrate globins.
• Arrow 2: ancestor of insect and vertebrate globins



The neighbor-joining tree of SARS-CoV-2 
related coronaviruses

• CDSs were aligned based on translated amino acid sequences using MUSCLE
v3.8.31 …

• Phylogenetic relationships were constructed using the neighbor-joining method based 
on Kimura’s two-parameter model.

The origin and underlying driving forces of the SARS-CoV-2 outbreak, Shu-Miaw Chaw, Jui-Hung Tai, Shi-Lun Chen, Chia-Hung Hsieh, Sui-Yuan Chang, Shiou-
Hwei Yeh, Wei-Shiung Yang, Pei-Jer Chen, Hurng-Yi Wang bioRxiv 2020.04.12.038554; doi: https://doi.org/10.1101/2020.04.12.038554



Phylogenetic Relationship of CoVs

• Sequence alignment was carried out using MUSCLE software. 

• Gblocks was used to process the gap in the aligned sequence. 

• Using MegaX, we inferred all maximum likelihood phylogenetic trees.

Zhang, T., Wu, Q. & Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biology Cb 30, 1346-1351.e2 
(2020).



Taxon sampling

Alignment

Sampling conserved positions

Create tree

Visualise tree

Flow to build Phylogenetic tree
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Lineage B clade-specific determinants for 
human ACE2 usage

• Replacing all 14 contact points and the surrounding amino acids (known as the 
receptor-binding motif (RBM)) led to increased ACE2 entry with clade 2 and 3 RBDs
• 2 → 1 (version 3) = clade 2 residues 322–400 + clade 1 residues 400–501

• 3 → 1 (version 3) = clade 3 residues 322–385 + clade 1 residues 386–501

Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B 
betacoronaviruses. Nat Microbiol5, 562–569 (2020).
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betacoronaviruses. Nat Microbiol5, 562–569 (2020).



1. Sequence Alignment
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Manguel M, Samaniego F.J.,  Abraham Wald’s Work on Aircraft Suvivability, J. American Statistical Association. 79, 259-270, (1984) Adapted from  Cedric Notredame



4/21/20 12

• Biologists should realise that before long we shall have a subject 

which might be called ‘protein taxonomy’—the study of the 

amino acid sequences of the proteins of an organism and the 

comparison of them between species. 

• It can be argued that these sequences are the most delicate 

expression possible of the phenotype of an organism and that 

vast amounts of evolutionary information may be hidden away 

within them.

Crick FHC. On protein synthesis. Symp Soc Exp Biol. 1958; 12:138–163. PMID: 13580867
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Sequence alignment http://phylo.cs.mcgill.ca/



1.1 Substitution Matrix
1. Sequence Alignment
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How Can We Compare Sequences ?

• To compare Sequences, we need to compare residues

• We need to know how much it COSTS to SUBSTITUTE
• an Alanine into an Isoleucine
• a Tryptophan into a Glycine

• The table that contains the costs for all the possible 
substitutions is called the SUBSTITUTION MATRIX

Adapted from  Cedric Notredame
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Some Residues are Easier To mutate into other 
similar.

The Diagonal Indicates How Conserved a 
residue tends to be.
W is VERY Conserved

Making a Substitution Matrix

Adapted from  Cedric Notredame



How to derive that matrix?
PAM
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Aij = fre. of amino acid i aligned with j
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Normalized frequencies of amino acids, 
fi

some are more common (G, A, L, K) and some rare (C, Y, M, W).
Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-1, Page 81
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The relative mutability of amino acid j, mj

• the # of j was observed to mutate / the overall occurrence frequency of j 
(fi)

• In a scoring system alignment of two tryptophans will be weighted more 
heavily than two asparagines.

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Table 3-2, Page 82
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Mutation matrix ‒ original amino acids 
(columns) and replacements (rows)

• The relative mutability of amino acid j 

𝑀!" =
𝜆𝑚"𝐴!"
∑!𝐴!"

𝑀!! = 1 − 𝜆𝑚!, , where 𝜆 is a proportion constant

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-9,Page 84
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From a mutation probability matrix to a 
log odds matrix

𝑠!" = 10× log#$
𝑀!"

𝑓!
, where𝑅!" =

𝑀!"
𝑓!

• Mij: models the observed change
• fi: the probability of a.a. i occurring in the second sequence 

by chance

• a log scoring matrix, why?
• doing a pairwise alignment (or a BLAST search) we know what 

score to assign to two aligned amino acid residues.
• Logarithms are easier to use for a scoring system => sum the 

scores of aligned residues rather than multiply them.

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Eq. 3-4, Page 89
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What do the numbers mean in a log 
odds matrix?
• 0: neutral
• +2: indicates that the amino acid replacement 

occurs 1.6 times as frequently as expected by 
chance
• –10: that the correspondence of two amino acids in 

an alignment that accurately represents homology 
(evolutionary descent) is one tenth as frequent as 
the chance alignment of these amino acids
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Adapted from  Cedric Notredame

PAM matrices

• PAM1
• At an evolutionary interval of PAM1, one change has occurred 

over a length of 100 amino acids.

• Other PAM matrices are extrapolated from PAM1
• PAMx = multiplied PAM1 by itself
• PAM250 matrix: for proteins that share ~20% identity 
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Mutation Matrix vs Log-odds score matrix 

• Take PAM250 as an example, from asymmetric to 
symmetric, why?

Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Page 90
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Why does PAM1 become symmetric?

• 𝑀!" =
#$!%"!

∑"#$,"&!
'( %"!

= 𝑚"×
#%"!

∑"#$,"&!
'( %"!

=
∑"#$,"&!
'( %"!

'!
×

#%"!
∑"#$,"&!
'( %"!

=
#%"!
'!

• 𝑀"! =
#$"%"!

∑"#$,"&!
'( %"!

=𝑚!×
#%"!

∑"#$,"&!
'( %"!

=
∑"#$,"&!
'( %"!

'"
×

#%"!
∑"#$,"&!
'( %"!

=
#%"!
'"

• 𝑅!" =
("!

'"
=

)*"!
+!

'"
= #%"!

'"'!
=

)*"!
+"
'!

= (!"

'!
= 𝑅"!



BLOcks SUbstitution
Matrix (BLOSUM)

Henikoff, S.; Henikoff, J.G. (1992). "Amino Acid Substitution 
Matrices from Protein Blocks". PNAS. 89 (22): 10915‒10919
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Procedure of BLOSUM

• Cluster together sequences in a family 
whenever more than L% identical residues 
are shared, for BLOSUM-L.
• Based on local alignments & use aligned 

ungapped regions of protein families.
• Count number of substitutions across 

different clusters (in the same family).
• Estimate frequencies using the counts.
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Bioinformatics and Functional Genomics, 3rd Edition, Jonathan Pevsner, Fig. 3-18, Page 94

Summary of PAM and BLOSUM 
matrices
• BLOSUM62 is a matrix calculated from comparisons of sequences with 

no less than 62% divergence.
• the default matrix in BLAST 2.0
• Most widely used (PAM250)

• A higher PAM number, and a lower BLOSUM number, tends to 
correspond to a matrix tuned to more divergent proteins.



1.2 Pairwise Alignment
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Adapted from  Cedric Notredame

HOW Can we Align Two Sequences?



Global Alignments

• Take 2 Nice Protein Sequences

• A good Substitution Matrix (Blosum62)

• DYNAMIC PROGRAMMING

>Seq1
THEFATCAT
>Seq2
THEFASTCAT

DYNAMIC
PROGRAMMING

THEFA-TCAT
THEFASTCAT

Adapted from  Cedric Notredame



Dynamic Programming
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Bellman, R. The theory of dynamic programming. Bulletin of the American Mathematical Society 60, 503–515 (1954).



Using Dynamic Programming To 
Align Sequences
• DP invented in the 1950s by Bellman
• Programming ó Tabulation

• Re-invented in 1970 by Needlman and Wunsch
• It took 10 year to find out…
• Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method 

applicable to the search for similarities in the amino acid sequence of two 
proteins". Journal of Molecular Biology. 48 (3): 443–53

Adapted from  Cedric Notredame

http://linkinghub.elsevier.com/retrieve/pii/0022-2836(70)90057-4


Global Alignment
Needleman, Saul B. & Wunsch, Christian D. (1970). "A general method 
applicable to the search for similarities in the amino acid sequence of 

two proteins". Journal of Molecular Biology. 48 (3): 443‒53

http://linkinghub.elsevier.com/retrieve/pii/0022-2836(70)90057-4


The Principal of DP

• If you extend optimally an optimal alignment of two 
sub-sequences, the result remains an optimal 
alignment

X-XX
XXXX

X
-

X
X

-
X

Deletion

Alignment

Insertion

?
?+

Adapted from  Cedric Notredame



Finding the score of i,j

• Sequence 1: [1-i]

• Sequence 2: [1-j]

• The optimal alignment of [1-i] vs [1-j] can finish in three 
different manners:

X
-

X
X

-
X

Adapted from  Cedric Notredame
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i
-

i
j

-
j

1…i
1…j-1

1…i-1
1…j-1

1…i-1
1…j

+

+

+

Three ways to build the alignment 

1…i
1…j

Finding the score of i,j

Adapted from  Cedric Notredame
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score_m(i,j)= best 

score_m(i,j-1) + gap_s

score_m(i-1,j-1) + 
match_s/mismatch_s

score_m(i-1,j) + gap_s X
-

X
X

-
X

1…i
1…j-1

1…i-1
1…j-1

1…i-1
1…j

+

+

+

Formalizing the algorithm

Adapted from  Cedric Notredame
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- F A
-

F

A

S

T

T

1…I-1
1…J-1

1…I
1…J-1

1…I-1
1…J

1…I
1…J

Arranging Everything in a Table

Adapted from  Cedric Notredame
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Filing Up The Matrix

Adapted from  Cedric Notredame

score_m(i,j)= best 

score_m(i,j-1) + gap_s

score_m(i-1,j-1) + 
match_s/mismatch_s

score_m(i-1,j) + gap_s X
-

X
X

-
X

1…i
1…j-1

1…i-1
1…j-1

1…i-1
1…j

+

+

+
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- F A

-

F

A

S -3

-2

-1

-1 -2

T

-3

T -4

-2
+2

-2 +2
-3

-2

+1 +1
-4

-3

0 0

+1
-2

-3 +1
0

+4

0 +4
-1

0

+3 +3
0

-3

-4 0
+3

0

-1 +3
+2

+3

+2 +3
-1

-4

-5 -1
+2

-1

-2 +2
+2

+5

+1 +5

0

Adapted from  Cedric Notredame
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Score of 1…3 Vs 1…4
ó

Optimal Aln Score 

T
T

S
-

A
A

F
F

Delivering the alignment: Trace-
back

Adapted from  Cedric Notredame



Trace-back: possible implementation
while (!(i==0 && j==0)): 

if (direc_m[i][j]== ‘sub’):    #SUBSTITUTION

aln1[aln_len]=pro1Seq[--i] 

aln2[aln_len]=pro2Seq[--j] 

elif (direc_m[i][j]==‘del’): #DELETION

aln1[aln_len]='-' 

aln2[aln_len]=pro2Seq[--j] 

elif (direc_m[i][j]==‘ins’): #INSERTION

aln1[aln_len]=pro1Seq[0][--i]

aln2[aln_len]='-'

aln_len++

} 

Adapted from  Cedric Notredame



Local Alignment
Smith & Waterman algorithm

Smith, T. F. & Waterman, M. S. Identification of common 
molecular subsequences. J. Mol. Biol. 147, 195‒7 (1981).



GLOBAL Alignment LOCAL Alignment

Global alignment VS local alignment

• Global : extends from one end of each sequence to the other.

• Local : finds optimally matching regions within two sequences,
• Subsequences useful to find domains (or limited regions of homology) within sequences
• Smith and Waterman (1981) solved the problem of performing optimal local sequence 

alignment.
• Other methods (BLAST, FASTA) are faster but less thorough.

Adapted from  Cedric Notredame
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B&FG 3e, Fig. 3-23, Page 101

Global:
15% identity

Local:
30% identity

Global alignment (top) includes matches 
ignored by local alignment (bottom)



F(i,j)= best 

F(i-1,j) + Gep

F(i-1,j-1) + Mat[i,j]

F(i,j-1) + Gep X
-

X
X

-
X

1…i
1…j-1

1…i-1
1…j-1

1…i-1
1…j

+

+

+

0

The Smith and Waterman Algorithm

• 0 => Ignore the rest of the Matrix => terminate a local 
alignment

Adapted from  Cedric Notredame
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0

Filing Up a SW Matrix

Adapted from  Cedric Notredame

F(i,j)= best 

F(i-1,j) + Gep

F(i-1,j-1) + Mat[i,j]

F(i,j-1) + Gep X
-

X
X

-
X

1…i
1…j-1

1…i-1
1…j-1

1…i-1
1…j

+

+

+

0
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*  - A N I C E C A T
- 0 0 0 0 0 0 0 0 0
C  0
A  0
T  0
A  0
N  0 
D  0
O  0
G  0 

Local alignments NEVER 
start/end with a gap… 

Filling up a SW matrix: borders

Adapted from  Cedric Notredame



Filling up a SW matrix

• Best Local score ó Beginning of the trace-back

Adapted from  Cedric Notredame



Adding Affine Gap Penalties
Forcing a bit of Biology into your alignment

Gotoh, O. An improved algorithm for matching biological 
sequences. J. Mol. Biol. 162, 705‒8 (1982).

Adapted from  Cedric Notredame



Gap Penalties: Opening & extension

• Gaps : Positions at which a letter is paired with a null are called.
• Gap scores are typically negative.
• Opening a gap is more expensive than extending it

• Since a single mutational event may cause the insertion or deletion of more than one 
residue, the presence of a gap is ascribed more significance than the length of the 
gap.

• Thus there are separate penalties for gap open and gap extension.

Seq AGARFIELDTHE----CAT
|||||||||||    |||

Seq BGARFIELDTHELASTCAT

Gap Opening Penalty
Gap Extension Penalty

Adapted from  Cedric Notredame



X-XX
XXXX

X
-

X
X

-
X

Deletion

Alignment

Insertion

?
?+

Opening

Extension

Opening

Extension

But Harder To compute…

• More Than 3 Ways to extend an Alignment

Adapted from  Cedric Notredame



1…I-1 ??X
1…J-1 ??X

1…I  ??-
1…J  ??X

1…I   ??-
1…J-1 ??X

GOP GEP

More Questions Need to be asked

• For instance, what is the cost of an insertion ?

Adapted from  Cedric Notredame
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M(i,j)= best 
M(i-1,j-1) +  Mat(i,j) X

X
1…i-1
1…j-1Ix(i-1,j-1) + Mat(i,j)

Iy(i-1,j-1) + Mat(i,j)

X
-

1…i-1 X
1…j    X

Ix(i,j)= best 
M(i-1,j) + gop

Ix(i-1,j) + gep X
-

1…i-1 X
1…j     -

-
X

1…i X
1…j-1 X

Iy(i,j)= best 
M(i,j-1) + gop

Iy(i,j-1) + gep -
X

1…i -
1…j-1 X

Solution: Maintain 3 Tables

Adapted from  Cedric Notredame



A Score in Linear Space

• You never Need More Than The Previous Row 
To Compute the optimal score

Adapted from  Cedric Notredame
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R1
R2

A Score in Linear Space

for i=1:I
for j=1:J

R2[i][j]=best 
R2[j-1], +gep
R1[j-1]+mat
R1[j]+gep

for J, 
R1[j]=R2[j]

Adapted from  Cedric Notredame
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You never Need More Than The 
Previous Row To Compute the optimal 
score
You only need the matrix for the Trace-
Back, 

Or do you ????

A Score in Linear Space

Adapted from  Cedric Notredame
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Forward Algorithm F(i,j)=Optimal  score of
0…i Vs 0…j

Backward algorithm

B(i,j)=Optimal  score of
M…i Vs N…j

B(i,j)+F(i,j)=
Optimal score of the alignment that 
passes through pair i,j

An Alignment in Linear Space

Myers, E. W. & Miller, W. Optimal alignments in linear space.Comput. Appl. Biosci. 4, 11–7 (1988).

Adapted from  Cedric Notredame



4/21/20 62

Backward algorithm

Forward Algorithm

Optimal B(i,j)+F(i,j)

Backward algorithm

Forward Algorithm

An Alignment in Linear Space

Adapted from  Cedric Notredame
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Backward algorithm

Forward Algorithm

Recursive divide and conquer strategy: 
Myers and Miller (Durbin p35)

An Alignment in Linear Space

Adapted from  Cedric Notredame



Remember Not To Run Out of Memory

• A survey paper
• Chao, K.-M., Hardison R. C. and Miller, W., 1994, Recent 

Developments in Linear-Space Alignment Methods: a 
Survey, Journal of Computational Biology, 1: 271-291.

趙坤茂 (Kun-Mao Chao)
台大資工系



Recap: Pairwise alignment

• Needleman and Wunsch: Delivers the best 

scoring global alignment

• Smith and Waterman: NW with an extra 

state 0

• Affine Gap Penalties: Making DP more 

realistic

• Linear space: Using Divide and Conquer 

Strategies Not to run out of memory

Adapted from  Cedric Notredame



1.3 Multiple Sequence Alignment
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Adapted from  Cedric Notredame

Sometimes two sequences are not 
enough…

• The man with TWO watches NEVER knows the time
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The COMPUTATIONAL Problem

• A nice set of Sequences

• Substitution Matrix (Blosum)

• Gap Penalties

• An Evaluation/Scoring Function

• An Alignment Algorithm

Adapted from  Cedric Notredame
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What is A Multiple Sequence 
Alignment?
• Structural Criteria

• Residues are arranged so that those playing a similar role end 
up in the same column.

• Evolution Criteria
• Residues are arranged so that those having the same ancestor

end up in the same column.
chite ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
wheat  --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE
trybr KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
mouse  -----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP

***. ::: .: ..  .    :  . .      *  .  *: *  

chite AATAKQNYIRALQEYERNGG-
wheat  ANKLKGEYNKAIAAYNKGESA
trybr AEKDKERYKREM---------
mouse  AKDDRIRYDNEMKSWEEQMAE

*   : .* . :         

Adapted from  Cedric Notredame
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Phylogenic
Relation

Functional
Relation

Adapted from  Cedric Notredame

By Rico Heil (User:Silmaril) - private photoBy peellden -自己的作品

https://en.wikipedia.org/wiki/de:User:Silmaril
https://commons.wikimedia.org/wiki/User:Peellden
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Scoring function

• Sum of Pair (SP)
• Tree Cost: MSA with tree cost will be called 

tree alignment.
• Circular Sum(CS)

S1：ATTCG

S2：AGTCG

S3：ATCAG

S’
1：A T – T C – G

S’
2：A – G T C – G

S’
3：A T – – C A G

MSA
2

4
2

Cost = 8
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MSA with SP-Score: Exact Algorithm

• Given
• k : # of Sequences 
• n : Sequences of length

• Exactly by Dynamic Programming
• 𝑂(2𝑛!)：D.Snakoff, Simultaneous solution of RNA folding, 

alignment and Protosequence prolblems, SIAM J. Appl. Math.,(1985) 
• Exact methods of multiple alignment use dynamic programming 

and are guaranteed to find optimal solutions. But they are not 
feasible for more than a few sequences.



4/21/20 73

MSA with SP-Score: Complexity

• Wang L. Jiang T. On the complexity of multiple sequence alignment, J 
Comput Biol 1994 Winter;1(4):337-48

• multiple alignment with SP-Score => NP-complete reduction from shorest
common supersequence (non-metric : not symmetry)

• multiple tree alignment => MAX SNP-hard

• Paola Bonizzoni, Gianluca Della Vedoa The complexity with Multiple 
sequence alignment with SP-score that is a metric, Theoretical 
Computer Science; 259 (2001) 63-79

• multiple alignment with SP-Score => NP-complete reduction from node cover



Feng-Doolittle algorithm
D.F.Feng, R.F.Doolittle, Progressive sequence alignment as a prerequisite to 

correct phylogenetic trees. J. Mol. Evol. 25, 351-360., (1987)
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Progressive alignment

• Any exact method would be TOO SLOW.

• We will use a heuristic algorithm.
• Progressive alignment algorithm is the most popular

• use a guide tree (related to a phylogenetic tree) to determine how to 
combine pairwise alignments one by one to create a multiple 
alignment.

• Examples
• ClustalW
• MUSCLE

• - Greedy Heuristic (No Guaranty)
• + Fast

Adapted from  Cedric Notredame
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Clustering

Adapted from  Cedric Notredame

Feng-Doolittle MSA occurs in 3 stages

• Feng and Dolittle, 1988; Taylor 1989
1. Do a set of global pairwise alignments

• Needleman and Wunsch’s dynamic programming 
algorithm

2. Create a guide tree 
3. Progressively align the sequences
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best score

Generate global pairwise alignments 
(Progressive 1/3)
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Guide tree (Progressive 2/3)

• Convert similarity scores to distance scores
• A tree shows the distance between objects
• Use UPGMA (defined in the phylogeny chapter)
• ClustalW provides a syntax to describe the tree

Credit by B&FG 3e, Jonathan Pevsner
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Progressive alignment (Progressive 3/3)

• Make a MSA based on the order in the guide tree
• Start with the two most closely related sequences
• Then add the next closest sequence
• Continue until all sequences are added to the MSA
• Rule: once a gap, always a gap, why?

• Gaps are often added to the first two (closest) sequences
• To change the initial gap choices later on would be to give more 

weight to distantly related sequences
• To maintain the initial gap choices is to trust that those gaps are 

most believable

Credit by B&FG 3e, Jonathan Pevsner
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Dynamic Programming Using A Substitution Matrix

Adapted from  Cedric Notredame

Progressive Alignment



ClustalW
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving 
the sensitivity of progressive multiple sequence alignment through 
sequence weighting, position-specific gap penalties and weight matrix 
choice. Nucleic Acids Res. 22, 4673‒80 (1994).
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The top 100 papers

Credit by Nature, http://www.nature.com/news/the-top-100-papers-1.16224

http://www.nature.com/news/the-top-100-papers-1.16224
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Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3
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ClustalW

But owing to the vagaries of citation habits, BLAST has been 
bumped down the list by Clustal, a complementary programme
for aligning multiple sequences at once. Clustal allows 
researchers to describe the evolutionary relationships between 
sequences from different organisms, to find matches among 
seemingly unrelated sequences and to predict how a change at a 
specific point in a gene or protein might affect its function. A 
1994 paper describing ClustalW, a user-friendly version of the 
software, is currently number 10 on the list. A 1997 paper on a 
later version called ClustalX is number 28.

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3
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ClustalW

The team that developed ClustalW, at the European Molecular Biology Laboratory
in Heidelberg, Germany, had created the program to work on a personal computer,
rather than a mainframe. But the software was transformed when Julie Thompson,
a computer scientist from the private sector, joined the lab in 1991. “It was a
program written by biologists; I’m trying to find a nice way to say that,” says
Thompson, who is now at the Institute of Genetics and Molecular and Cellular
Biology in Strasbourg, France. Thompson rewrote the program to ready it for the
volume and complexity of the genome data being generated at the time, while
also making it easier to use.

The teams behind BLAST and Clustal are competitive about the ranking of their 
papers. It is a friendly sort of competition, however, says Des Higgins, a biologist at 
University College Dublin, and a member of the Clustal team. “BLAST was a game-
changer, and they’ve earned every citation that they get.”

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3
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Credit by B&FG 3e, Jonathan Pevsner

Thompson et al. (1994) for an explanation of the three stages 
of progressive alignment implemented in ClustalW



4/21/20 88

Pairwise alignment:
Calculate distance matrix

Unrooted neighbor-
joining tree

Credit by B&FG 3e, Jonathan Pevsner
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Unrooted neighbor-
joining tree

Rooted neighbor-joining 
tree (guide tree) & 
sequence weights

Credit by B&FG 3e, Jonathan Pevsner
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Rooted neighbor-joining 
tree (guide tree) and 

sequence weights

Progressive 
alignment: Align 

following the guide 
tree

Credit by B&FG 3e, Jonathan Pevsner
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Additional features of ClustalW improve
its ability to generate accurate MSAs

• Individual weights are assigned to sequences; very 
closely related sequences are given less weight, while 
distantly related sequences are given more weight

• Scoring matrices are varied dependent on the presence of 
conserved or divergent sequences, e.g.:
• PAM20 80-100% id
• PAM60 60-80% id
• PAM120 40-60% id
• PAM350 0-40% id

• Residue-specific gap penalties are applied

Credit by B&FG 3e, Jonathan Pevsner
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Iterative methods

• compute a sub-optimal solution and keep modifying that 
intelligently using dynamic programming or other methods until 
the solution converges.

• MUSCLE, Mafft, HMMs, HMMER, SAM,, IterAlign, Praline
• +: Good Profile Generators
• -: Slow, Sometimes Inaccurate

Adapted from  Cedric Notredame



Adapted from  Cedric Notredame

Muscle
• Edgar, R. MUSCLE: a multiple sequence alignment method with reduced time and 

space complexity. Bmc Bioinformatics 5, 1–19 (2004).

• Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Res 32,1792–1797 (2004)



MUSCLE: Improve the progressive 
alignment
• Build a draft progressive alignment

• Determine pairwise similarity through k-mer counting

• Compute triangular distance matrix

• Construct tree using UPGMA

• Construct draft progressive alignment following tree

• Compute pairwise identity through current MSA

• Construct new tree with Kimura distance measures

• Compare new and old trees: if improved, repeat this step, if not improved, then weʼre done

• Refinement of the MSA

• Split tree in half by deleting one edge

• Make profiles of each half of the tree

• Re-align the profiles

• Accept/reject the new alignment

Credit by B&FG 3e, Jonathan Pevsner



MAFFT : Fast Fourrier Transforme

• Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid 
multiple sequence alignment based on fast Fourier transform. Nucleic Acids 
Res. 30, 3059–66 (2002).

• Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence 
alignment program. Brief. Bioinformatics 9, 286–98 (2008).

Adapted from  Cedric Notredame



MAFFT

• Uses Fast Fourier Transform to speed up profile 
alignment

• Uses fast two-stage method for building alignments 
using k-mer frequencies

• Offers many different scoring and aligning 
techniques

• One of the more accurate programs available
• Available as standalone or web interface
• Many output formats, including interactive 

phylogenetic trees

Credit by B&FG 3e, Jonathan Pevsner
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B&FG 3e Fig. 6.6 Page 215

Iterative method of MAFFT



Consistency-based 
approaches
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SeqA GARFIELD THE LAST FA-T CAT

SeqB GARFIELD THE FAST CA-T ---

SeqC GARFIELD THE VERY FAST CAT

SeqD -------- THE ---- FA-T CAT

CLUSTALW (Score=20, Gop=-1, Gep=0, M=1)

SeqA GARFIELD THE LAST FA-T CAT

SeqB GARFIELD THE FAST ---- CAT

SeqC GARFIELD THE VERY FAST CAT

SeqD -------- THE ---- FA-T CAT

CORRECT (Score=24)

Adapted from  Cedric Notredame

Progressive Alignment
When It Doesn’t Work
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Multiple sequence alignment: 
consistency

• generally use a database of both local high-
scoring alignments and long-range global 
alignments to create a final alignment
• These are very powerful and very accurate 

methods
• Examples: T-Coffee, Prrp, DiAlign, ProbCons

Credit by B&FG 3e, Jonathan Pevsner



4/21/20 102

Local Alignment Global Alignment

Multiple Sequence Alignment

Multiple Alignment

StructuralSpecialist

Adapted from  Cedric Notredame

Mixing Heterogenous Data With 
T-Coffee
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www.tcoffee.org
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Constrained MSA



Homology extension approach
Chang, J.-M., Tommaso, P., Taly, J.-F. & Notredame, C. 
Accurate multiple sequence alignment of transmembrane 
proteins with PSI-Coffee. Bmc Bioinformatics 13, 1‒7 (2012).
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Homology-extended

Simossis VA, Kleinjung J, Heringa J: Homology-extended sequence alignment. Nucleic Acids Res 2005, 33(3):816-824.

Que1: how to 
build a profile?

Que2: how to 
score profiles?



Searching parameters

• Fast, Insensitive search
• High percent identity
• blastp –F “m S” –f 999 –M BLOSUM80 –G 9 –E 2 –e 1e-5

• Slow, Sensitive search
• Increase sensitivity, decrease specificity
• blastp –F “m S” –f 9 –M BLOSUM45 –e 100 –b 10000 –v 10000

• BLAST, page 146, 147
• By Ian Korf, Joseph Bedell, Mark Yandell
• Publisher: O'Reilly Media
• Release Date: July 2003

http://www.oreillynet.com/pub/au/1087
http://www.oreillynet.com/pub/au/1089
http://www.oreillynet.com/pub/au/1088
https://www.safaribooksonline.com/library/publisher/oreilly-media-inc/%3Futm_medium=referral&utm_campaign=publisher&utm_source=oreilly&utm_content=catalog&utm_content=catalog
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Data Set No.

UniRef50-TM 87,989

UniRef90-TM 263,306

UniRef100-TM 613,015

UniProt-TM 818,635

UniRef50 3,077,464

UniRef90 6,544,144

UniRef100 9,865,668

UniProt 11,009,767

NCBI NR 10,565,004

Database Size

UniRef50
TM

UniRef90
TM

UniRef100
TM

UniProt
TM

NCBI non-redundant (NR)
UniProt (release 15.15 – 2010)

UniRef50 UniRef90 UniRef100

keyword:"Transmembrane [KW-0812]"



Performance comparison of different database sizes 
for the BAliBASE2-ref7.

• UniRef50-TM contains about 100 times fewer sequences than the full 
UniProt.

• The level accuracy is comparable and even superior to that achieved with 
the default PSI-Coffee while the CPU time requirements are dramatically 
decreased by a factor 10. 



2.Phylogenetic trees



2.1 Enumerating trees and 
selecting search strategies
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For three operational taxonomic 
units (OTUs) there is one possible 
unrooted tree.

Any of the three 
edges can be selected 
to form a root.

Three rooted trees 
are possible.

# of rooted and unrooted trees: 3 OTUs



B&FG 3e Fig. 7.11 Page 265

For 4 OTUs there are three 
possible unrooted trees.

For 4 OTUs there are 15 
possible rooted trees.

There is only one of these 15 
trees that accurately describes 
the evolutionary process by 
which these four sequences 
evolved.

# of rooted and unrooted trees: 4 OTUs



TU(k): the # of unrooted tree for n taxa

Let E(k) denote the # of edges in the unrooted 
tree for k species.

𝐸 𝑘 = 2𝑘 − 3

Let TU(k) denote the # of unrooted trees for k
species.

𝑇𝑈 𝑘 = 𝑇𝑈 𝑘 − 1 ×𝐸 𝑘 − 1
= 𝑇𝑈 𝑘 − 2 ×𝐸 𝑘 − 2 ×𝐸 𝑘 − 1

=+
!"#

$%&

𝐸(𝑘 − 𝑖)

=+
!"#

$%&

(2𝑘 − 2𝑖 − 3)

= 2𝑘 − 5 ×⋯×5×3×1

Credit by 李家同計算生物學



TU(k) function

𝑇𝑈(𝑘) = 1×3×5×⋯× 2𝑘 − 5

=
1×2×3×4×5×⋯× 2𝑘 − 6 × 2𝑘 − 5

2×4×⋯×(2𝑘 − 6)

=
2𝑘 − 5 !

(2×1)×(2×2)⋯ (2× 𝑘 − 3 )

=
2𝑘 − 5 !

(2×2×⋯×2)×(1×2×⋯× 𝑘 − 3 )

=
2𝑘 − 5 !

2$%' 𝑘 − 3 !

k TU(k)

4 3

5 15

6 105

7 945

8 10395

9 135,135

10 2,027,025

… …

20 ~2x1020



TR(k): the # of rooted tree for k species

𝑇𝑅 𝑘 = 𝑇𝑈 𝑘 × 2𝑘 − 3
= 𝑇𝑈 𝑘 ×𝐸 𝑘
= 𝑇𝑈(𝑘 + 1)

Credit by 李家同計算生物學

k TU(k) TR(k)

2 1 1

3 1 3

4 3 15

5 15 105

10 2,027,025 34,459,425

20 ~2x1020 ~8 x 1021



Stage 1: Use of DNA, RNA, or protein

• For phylogeny, DNA can be more informative.

• Some substitutions in a DNA sequence alignment can be directly 
observed: single nucleotide substitutions, sequential substitutions, 
coincidental substitutions.  

• Additional mutational events can be inferred by analysis of ancestral 
sequences. 



B&FG 3e Fig. 7.15 Page 269 

protein

DNA

Two sequences (human and mouse) and their common ancestor: 
we can infer which DNA changes occurred over time



Stage 2: Multiple sequence alignment

1. Confirm that all sequences are homologous

2. Adjust gap creation and extension penalties as needed to optimize the 
alignment

3. Restrict phylogenetic analysis to regions of the multiple sequence 
alignment for which data are available for all taxa (delete columns 
having incomplete data).



Stage 3: models of DNA and amino acid 
substitution

• The simplest approach to measuring distances between sequences
• align pairs of sequences
• count the number of differences.

• For an alignment of length N with n sites at which there are differences, 
the degree of divergence D is (Hamming distance)

• D = n / N
• But observed differences do not equal genetic distance!

• Genetic distance involves mutations that are not observed directly.
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nucleotide step matrix

amino acid step matrix
For amino acids, between 1 and 3 
nucleotide changes are required to 
change one residue to another.

Step matrices: number of steps required 
to change a character



Quantification of 
evolutionary distances



Evolutionary Distances

• They measure the total number of substitutions that occurred on 
both lineages since divergence from last common ancestor.
• Divided by sequence length.
• Expressed in substitutions / site

ancestor

sequence 1 sequence 2



The problem of hidden or multiple changes

• D (true evolutionary distance) ³ fraction of observed differences (p)

• D = p + hidden changes
• Through hypotheses about the nature of the residue substitution 

process, it becomes possible to estimate D from observed 
differences between sequences.



Correcting for multiple substitutions

A T T G C G CC
A T T G C G C

T
CT
A A TA

C A

Differences

Su
bs

tit
ut

io
ns



Correcting for multiple substitutions

• Requires a statistical ‘model’ of how the process of substitution 
works to correct for

• Differences in the rates of different substitution types
• Jukes and Cantor – all substitutions are treated the same

• Kimura 2-parameter model – distinguishes between transitions and 
transversions

• Different frequencies of different nucleotides 
• GC content – the HKY model adds nucleotide frequency parameters to 

the Kimura 2-parameter model

• Different rates at different sites (often modelled using a 
distribution – e.g. Gamma distribution)



Stage 3: Jukes and Cantor one-parameter 
model of nucleotide substitution

• This model describes the probability that one nucleotide will change into another. It 
assumes that each residue is equally likely to change into any other.

• Jukes and Cantor (1969) proposed a corrective formula:

𝐷 = −
3
4 𝑙𝑛 𝑙 −

4
3𝑝

A G

T C

a
a

a

a

a

a



JC model: 𝐷 = − !
"
𝑙𝑛 1 − "

!
𝑝

• Consider an alignment where 3/60 aligned residues differ

• The normalized Hamming distance, 3/60 = 0.05.

• The Jukes-Cantor correction is 

𝐷 = −
3
4 𝑙𝑛 1 −

4
30.05 = 0.052

• When 30/60 aligned residues differ, the Jukes-Cantor correction is 

more substantial: 

𝐷 = −
3
4 𝑙𝑛 1 −

4
30.5 = 0.82



Two DNA substitution mutations

• Transitions:  interchanges of two-ring purines or of one-ring 
pyrimidines : they therefore involve bases of similar shape.

• A <–> G, C <–> T

• Transversions: interchanges of purine for pyrimidine bases, 
which therefore involve exchange of one-ring and two-ring 
structures.

• A <–> C, A <–> T, G <–> C, G <–> T



A G

T C

b

b

b

b

a

a

Kimura two-parameter model of nucleotide 
substitution (assumes a ≠ b)



Kimuraʼs two parameter distance (DNA)

• Hypotheses of the model
• All sites evolve independently and following the same process.
• Substitutions occur according to two probabilities

• Transitions : G <—>A  or C <—>T 
• Transversions : other changes

• The base substitution process is constant in time.

• Quantification of evolutionary distance (d) as a function of 
the fraction of observed differences p: transitions, q: 
transversions
• 𝑑 = − "

#
ln 1 − 2𝑝 − 𝑞 1 − 2𝑞

Kimura (1980) J. Mol. Evol. 16:111
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Jukes-Cantor model Kimura model Tamura model

There are dozens of models



GTR: 6 substitution types, unequal base frequencies

SYM

Equal base frequencies

TrN

3 substitution types 
(transversion, 2 
transitions)

HKY85 / F84

F81

Single 
substitution 
type

TrN

K2P

JC

Equal base 
frequencies

3 substitution types 
(transition, 2 transversions)

2 substitution 
types transversion, 
transition)

Equal base 
frequencies

Single 
substitution 
type

2 substitution types 
transversion, transition)

Note: there are also 
models for codon and 
amino acid data

Substitution model categories



Stage 4: tree-building methods
distance-based

maximum parsimony
maximum likelihood
Bayesian methods



Main families of Methods for Phylogenetic 
reconstruction

Adapted from  Cedric Notredame



UPGMA
Unweighted Pair-Group Method with 

Arithmetic Mean



Tree-building methods: UPGMA

• Step 2: Find the two proteins with the smallest pairwise 
distance. Cluster them. 

1 2

3

4

5

1 2
6

B&FG 3e Fig. 7.24 Page 284 



Tree-building methods: UPGMA

• Step 3: Do it again. Find the next two proteins with the 
smallest pairwise distance. Cluster them. 

1 2

3

4

5

1 2

6

4 5

7

B&FG 3eFig. 7.24 Page 284 



Tree-building methods: UPGMA

• Step 4: Keep going. Cluster. 

1 2

3

4

5 1 2

6

4 5

7

3

8

B&FG 3e Fig. 7.24 Page 284 



Tree-building methods: UPGMA

• Step 4: Last cluster! This is your tree. 

1 2

3

4

5
1 2

6

4 5

7

3

8

9

B&FG 3e Fig. 7.24 Page 284 
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Distance-based methods: UPGMA trees

• UPGMA is a simple approach for making trees.

• An UPGMA tree is always rooted.

• An assumption of the algorithm is that the molecular clock is constant 
for sequences in the tree. If there are unequal substitution rates, the tree 
may be wrong.

• While UPGMA is simple, it is less accurate than the neighbor-joining 
approach (described next).



Neighbor-Joining
N Saitou, M Nei, The neighbor-joining method: a new method 
for reconstructing phylogenetic trees. Molecular Biology and 

Evolution, Volume 4, Issue 4, Jul 1987, Pages 406‒425
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Saitou, N. & Nei, M. Mol. Biol. Evol. 4, 406‒425 (1987).

Number 20 on the list is a paper12 that introduced the “neighbor-joining” 
method, a fast, efficient way of placing a large number of organisms into a 
phylogenetic tree according to some measure of evolutionary distance 
between them, such as genetic variation. 

It links related organisms together one pair at a time until a tree is 
resolved. Physical anthropologist Naruya Saitou helped to devise the 
technique when he joined Masatoshi Nei’s lab at the University of Texas in 
Houston in the 1980s to work on human evolution and molecular genetics, 
two fields that were starting to burst at the seams with information.

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3

http://www.nature.com/news/the-top-100-papers-1.16224
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Saitou, N. & Nei, M. Mol. Biol. Evol. 4, 406‒425 (1987)

Another field buoyed by the growth in genome sequencing is 
phylogenetics, the study of evolutionary relationships 
between species.

“We physical anthropologists were facing kind of the big data 
of that time,” says Saitou, now at Japan’s National Institute of 
Genetics in Mishima. The technique made it possible to 
devise trees from large data sets without eating up computer 
resources. (And, in a nice cross-fertilization within the top-10, 
Clustal’s algorithms use the same strategy.)

Credit by The top 100 papers. Van Noorden R, Maher B, Nuzzo R. Nature. 2014 Oct 30;514(7524):550-3
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Why NJ instead of UPGMA?

In the original CLUSTAL programs, the initial guide trees, used to guide the 
multiple alignment, were calculated using the UPGMA method.

We now use the Neighbour-Joining method which is more robust against 
the effects of unequal evolutionary rates in different lineages and which 
gives better estimates of individual branch lengths.

This is useful because it is these branch lengths which are used to derive 
the sequence weights.

We also allow users to choose between fast approximate alignments or 
full dynamic programming for the distance calculations used to make the 
guide tree.

Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of  progressive multiple sequence alignment through sequence 
weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–80 (1994).



4/21/20 147

Making trees using neighbor-joining

• useful for making a tree having a large number of taxa.

• Begin by placing all the taxa in a star-like structure.

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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The algorithm

• Based on the current distance matrix calculate the matrix Q.
• Find the pair of distinct taxa i and j for which Q(i, j) has its 

lowest value. These taxa are joined to a newly created node, 
which is connected to the central node. 

• Calculate the distance from each of the taxa in the pair to this 
new node.

• Calculate the distance from each of the taxa outside of this pair 
to the new node.

• Start the algorithm again, replacing the pair of joined neighbors 
with the new node and using the distances calculated in the 
previous step.

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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The algorithm

1. Based on the current distance matrix calculate the matrix Q.
2. Find the pair of distinct taxa i and j for which Q(i, j) has its 

lowest value. These taxa are joined to a newly created node, 
which is connected to the central node. 

3. Calculate the distance from each of the taxa in the pair to 
this new node.

4. Calculate the distance from each of the taxa outside of this 
pair to the new node.

5. Start the algorithm again, replacing the pair of joined 
neighbors with the new node and using the distances 
calculated in the previous step.

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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The matrix Q

1. Based on the current distance matrix D calculate 
the matrix Q.
• 𝑄 𝑖, 𝑗 = 𝑛 − 2 𝑑 𝑖, 𝑗 − ∑4567 𝑑 𝑖, 𝑘 − ∑4567 𝑑(𝑛, 𝑘)

D Q1

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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Join two nodes

2. Find the pair of distinct taxa i and j for which Q(i, j) has its 
lowest value. These taxa are joined to a newly created node, 
which is connected to the central node.
• Merge nodes a and b into u

Q1

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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• 3. Calculate the distance from each of the taxa in the pair to this new 
node. i.e, Merge nodes f and g into u
• 𝛿 𝑓, 𝑢 = !

"
𝑑 𝑓, 𝑔 + !

"($%")
∑'(!$ 𝑑 𝑓, 𝑘 − ∑'(!$ 𝑑(𝑔, 𝑘)

• 𝛿 𝑔, 𝑢 = 𝑑 𝑓, 𝑔 − 𝛿 𝑓, 𝑢

• Example: Merge nodes a and b into u
• 𝛿 𝑎, 𝑢 = !

"
𝑑 𝑎, 𝑏 + !

"()%")
∑'(!) 𝑑 𝑎, 𝑘 − ∑'(!) 𝑑(𝑏, 𝑘) = )

"
+ *!%*+

,
= 2

• 𝛿 𝑏, 𝑢 = 𝑑 𝑎, 𝑏 − 𝛿 𝑎, 𝑢 = 5 − 2 = 3

Distance from the new node

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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Distance of the other taxa from the 
new node
• 4. Calculate the distance from each of the taxa outside of this pair to the new node.

• 𝑑 𝑢, 𝑘 = !
"
𝑑 𝑓, 𝑘 + 𝑑 𝑔, 𝑘 − 𝑑(𝑓, 𝑔)

• Example: Merge nodes a and b into u
• 𝑑 𝑢, 𝑐 = !

"
𝑑 𝑎, 𝑐 + 𝑑 𝑏, 𝑐 − 𝑑(𝑎, 𝑏) = #$!%&'

"
= 7

• 𝑑 𝑢, 𝑑 = !
"
𝑑 𝑎, 𝑑 + 𝑑 𝑏, 𝑑 − 𝑑(𝑎, 𝑏) = #$!%&'

"
= 7

• 𝑑 𝑢, 𝑒 = !
"
𝑑 𝑎, 𝑒 + 𝑑 𝑏, 𝑒 − 𝑑(𝑎, 𝑏) = ($#&'

"
= 6

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

https://en.wikipedia.org/wiki/Neighbor_joining
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Repeat

5. Start the algorithm again, replacing the pair of joined 
neighbors with the new node and using the distances 
calculated in the previous step.

Credit by  https://en.wikipedia.org/wiki/Neighbor_joining

Q2

…

https://en.wikipedia.org/wiki/Neighbor_joining


Maximum Parsimony 
Method
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Tree-building methods: character based

• Rather than pairwise distances between proteins, evaluate 
the aligned columns of amino acid residues (characters).

• Tree-building methods based on characters include
• maximum parsimony
• maximum likelihood
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Maximum Parsimony (MP)

• Find the tree with the shortest branch lengths possible. 
Thus we seek the most parsimonious (“simple”) tree.

• Identify informative sites.
• Constant characters are not parsimony-informative.

• Construct trees, counting the number of changes required 
to create each tree. 

• <= 12 taxa : evaluate all possible trees exhaustively
• >12 taxa :  perform a heuristic search.

• Select the shortest tree (or trees).
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An example of tree-building using MP

• Consider these four taxa

AAG

AAA

GGA

AGA

• How might they have evolved from a common ancestor such 
as AAA?
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AAG AAA GGA AGA

AAA
AAA

1 1 AGA

AAG AGA AAA GGA

AAA
AAA

1 2AAA

AAG GGA AAA AGA

AAA
AAA

1 1AAA1 2

Cost = 3 Cost = 4 Cost = 4

1

ü

MP

• Choose the tree(s) with the lowest cost (shortest 
branch lengths)
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Select the tree supported by the largest 
number of Informative Site

Site 5, 7 and 9 are informative site

For site5: 

• Tree II and III require 2 
changes

• Tree I  requires 1 change

Credit by 李家同計算生物學



Maximum Likelihood 
Method
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Making trees using maximum likelihood

• An alternative to maximum parsimony. 
• What are the tree topology and branch lengths that 

have the greatest likelihood of producing the 
observed data set?
• ML is implemented in the TREE-PUZZLE program, as 

well as MEGA5, PAUP and PHYLIP.
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Likelihood

• Given some data (D) a decision must be made about 
an adequate explanation (H, hypothesis)

• D: alignment
• H: Model of evolution, tree topology, branch lengths, 

parameters of the model
• L=Pr(D |H)

• Each H will have a certain probability of producing the 
data
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Likelihood vs Probability

• https://youtu.be/pYxNSUDSFH4
• The likelihood function != the probability of a 

hypothesis being correct!
• The likelihood function is defined in terms of 

probability of producing the observed events not of 
the unknown parameters

• Thus: the probability of observing the data has 
nothing to do with the probability that the underlying 
model is correct.

https://youtu.be/pYxNSUDSFH4
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Maximum Likelihood

• https://youtu.be/XepXtl9YKwc
• Given some data (D) a decision must be made about 

an adequate explanation (H, hypothesis)
• L=Pr(D |H)

• Each H will have a certain probability of producing the 
data

• The best H is that of the greatest P

https://youtu.be/XepXtl9YKwc
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Coin Example

• Data: flipping coins and counting the number of times 
“heads” appear
• You throw the coin twice and observe “heads” both times. 

• Hypotheses : You might have two hypotheses to explain 
these data.
• H1, the coin is normal: p = 0.5, of appearing head. 
• H2, the coin is rigged with an 80% chance of getting a head , p

= 0.8. 

• What is the likelihood of H1?
• What is the likelihood of H2?
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Likelihood of the coin example

• The probability of observing  “heads” in each of 
two flips 
• under H1, L(data|H1) =  0.5 x 0.5  = 0.25
• under H2, L(data|H2) =  0.8 x 0.8  = 0.64

• Since the probability of observing the data under 
H2 is greater than under H1, you might argue that 
the “rigged” coin hypothesis is the more likely. 
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Parameter Estimation

• Assuming sample x1, x2, ..., xn is from a parametric 
distribution f(x|θ), estimate θ. 

• Given sample HHTHH of (possibly biased) coin flips, 
estimate θ = probability of Heads

• Pr(HHTHH | .6) > Pr(HHTHH | .5), event HHTHH is more 
likely when θ = .6 than θ = .5

• And what θ make HHTHH most likely?
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Likelihood Function

• Probability of HHTHH, given θ: 

θ Θ4(1-θ)
0.20 0.0013
0.50 0.0313
0.80 0.0819
0.95 0.0407
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Maximum Likelihood Parameter 
Estimation 

• As a function of θ, what θ maximizes the likelihood 
of the data actually observed by taking derivative of 
L (Pr) with respect to θ

,-
,.
= 4𝜃/ − 5𝜃0 = 𝜃/ 4 − 5𝜃

• equating to 0, and solving
𝑑𝐿
𝑑𝜃

= 4𝜃/ − 5𝜃0 = 𝜃/ 4 − 5𝜃 = 0 → 𝜃 =
4
5

• More easily, likelihood are often maximized by 
maximizing their logarithm

ln 𝐿 = 4 ln 𝜃 + ln 1 − 𝜃
• whose derivative is

𝑑 ln 𝐿
𝑑𝜃 =

4
𝜃 −

1
1 − 𝜃 = 0 → 𝜃 =

4
5
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First use in phylogenetics

• Cavalli-Sforza and Edwards (1967) for gene frequency data
• Felsenstein (1981) for DNA sequences
• In phylogenetics, the hypothesis is 

• a tree topology
• its branch-lengths
• a model under which the data evolved

Sheep   Goat  

Cow   Bison

0.10

0.080.05

0.32

0.14
Branch-lengths as expected numbers of substitutions per site
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Maximum Likelihood Method(con’t)

• s homologous sequences each with N nucleotides
• Xk=(X1k,…,Xsk) the nucleotide configuration at kth site
• The likelihood function of tree T at the kth site
• The likelihood function for the entire sequence for tree T

𝐿 𝜃!, … , 𝜃" 𝑋!, … , 𝑋#, 𝑇 =B
$%!

#

𝑓(𝑋$|𝜃, 𝑇)
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• The model is reversible, ie. p(A®G) = p(A®G), so 
the root can be placed at any node

• Pattern probability = p(G ®G) ´ p(G ®G) ´ p(G ®A)
´ p(A ®A) ´ p(A ®A)

Root

A               A

G 

G 

A 

G 

Credit by Joe Felsenstein, Maximum Likelihood and model selection

An example
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• Under the simple Jukes-Cantor model, all base 
frequencies=0.25, all substitutions equally probable.

• 𝑃89 = /0.25 + 0.75𝑒
:;, 𝑖 = 𝑗

0.25 − 0.75𝑒:;, 𝑖 ≠ 𝑗
, where b is branch−length

(subs/site)
• Where b =0.5, Pij (i=j) = 0.7049, Pij(i≠j) = 0.0984

• Site pattern probability 
= p(G ®G) ´ p(G ®G) ´ p(G ®A) ´ p(A ®A) ´ p(A ®A)
= 0.7049 ´ 0.7049 ´ 0.0984 ´ 0.7049 ´ 0.7049 
= 0.0243

Credit by Joe Felsenstein, Maximum Likelihood and model selection

Site pattern probability

Root

A                  A

G 

G 

A 

G 
0.5

0.50.5

0.5
0.5
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• The likelihood of a tree = 
the product of the site 
likelihoods
• Taken as natural logs, the site 

likelihoods can be summed to give 
the log likelihood

• The sum of the probabilities 
for the 16 possible site 
patterns = 0.0333

• Hence, the site -lnL = 3.402

Credit by Joe Felsenstein, Maximum Likelihood and model selection

The likelihood of a tree 

A    A

G    G

A    A

G    G
A    A

G    G

A    A

G    G
A    A

G    G

A    A

G    G

A    A

G    G

A    A

G    G
A    A

G    G

A    A

G    G
A    A

G    G

A    A

G    G

A    A

G    G
A    A

G    G
A    A

G    G

A    A

G    G
A        A          A         A          C         C
A        G C T A         G

C T A   G C
C        C T         T          T

T A   G C T 
T G          G          G        G
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Site   –lnL(1)   –lnL(2)

1 2.457     2.891        
2       1.568     1.943
.       ..         ..
.       ..         ..

1206    2.541     1.943

2052.456  2043.655

Credit by Joe Felsenstein, Maximum Likelihood and model selection

the ML tree with the highest likelihood

• The tree with the highest likelihood (lowest ‒lnL)
• Tree 2 is the ML tree by 8.801 ‒lnL units(=2052.456-2043.655) 

Tree 1 Tree 2



Phylogenetic Relationship of CoVs

Zhang, T., Wu, Q. & Zhang, Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Curr Biology Cb 30, 1346-1351.e2 
(2020).



T-Coffee

Clustal

Muscle

MafftDCA

ProbCons

Dalign

If you build a tree, 

Which guy should I trust?



Ari Löytynoja and Nick Goldman, “Uniting Alignments and Trees,” Science 324, 
no. 5934 (June 19, 2009): 1528 -1529.



YPL077C with six topologies

Does bootstrap help us to determine non-unique topologies?

they have lower bootstraps

Karen M Wong, Marc A Suchard,  and John P Huelsenbeck,  “Alignment uncertainty and genomic analysis”, Science 319, no. 5862 (January 25, 
2008): 473-476.





Super multiple sequence alignment 
(SMSA)

Clustal MAFFT T-Coffee

S. cer

S. par

S. klu

…

…
…
…

S. cer

S. par

S. klu



SMSA Clustal MAFFT T-Coffee

…
…
…

S. cer
S. par
S. klu

Zharkikh A, Li WH (1995) Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. Mol Phylogenet Evol 4: 
44–63. doi:10.1006/mpev.1995.1005.

…
…
…

partial

…
…
…

weighted



Average bootstrap, AUC values and the number of TPs for 10 and 25 
accepted FPs of each method



OPOSSUM-– OPOSSUM—-
BLOS-UM62 BLO-SUM62

aligners

OPOSSUM
BLOSUM62



alignment uncertainty - data

Aln1
OPOSSUM--

BLOS-UM62

Aln2
OPOSSUM--
BLO-SUM62

OPOSSUM
BLOSUM62

Landan G, Graur D (2007) Heads or Tails: A Simple Reliability Check for Multiple Sequence Alignments. Molecular Biology and Evolution 24: 1380 –1383.

MUSSOPO
26MUSOLB

MSA



alignment uncertainty - data
Aln1

OPOSSUM--
BLOS-UM62

Aln2
OPOSSUM--
BLO-SUM62

O P O S S U M
B \ B

L \ L
O \ O

S \ \ S
U \ U

M \ M
6 | 6

2 | 2
O P O S S U M

Landan G, Graur D (2007) Heads or Tails: A Simple Reliability Check for Multiple Sequence Alignments. Molecular Biology and Evolution 24: 1380 
–1383.

If there are two paths
{

chooses low-road;
}



alignment uncertainty - data

• It gets worse with a multiple sequence alignment.

Aln1
BLOS-UM45
OPOSSUM--
BLOS-UM62

Aln3
BLO-SUM45
OPOSSUM--
BLO-SUM62

Aln2
BLO-SUM45
OPOSSUM--
BLOS-UM62

Aln4
BLOS-UM45
OPOSSUM--
BLO-SUM62

Telling apart Uncertainty parts of the alignment is 
more important than the overall accuracy.



Guidance

Penn O, Privman E, Landan G, Graur D, Pupko T (2010) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol
Evol 27: 1759–1767. 



Talavera G, Castresana J (2007) Improvement of Phylogenies after 
Removing Divergent and Ambiguously Aligned Blocks from Protein 
Sequence Alignments. Syst Biol 56: 564–577.

Gblocks

2691 citation by Google

trimAl

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a 
tool for automated alignment trimming in large-scale phylogenetic 
analyses. Bioinformatics 25: 1972–1973.

2270 citation by Google



x

y

xa

xd

ay

xb

ey

cy

M
SA

Pairw
ise alignm

ents

consistency inconsistency inconsistency 



x

y

xa xd

ay

xb

eycy
M
SA

consistency inconsistency inconsistency 

TCS (x,y)= 

76

93

78

71

80

81

76 71 80

76

76 + 71 + 80



T-COFFEE, Version_9.01 (2012-01-27 09:40:38)
Cedric Notredame 
CPU TIME:0 sec.
SCORE=76
*
BAD AVG GOOD
*
1j46_A   :  74
2lef_A   :  75
1k99_A   :  77
1aab_    :  72
cons :  76

1j46_A   75------4566---677777777777777777776666--7789999
2lef_A   6--------566---677777777777777777777766--7789999
1k99_A   865454445667---777788887888888888877877--7789999
1aab_    76------5665333566676666666666666666655336789999
cons 641111113455122566777666666777777666655215689999

CLUSTAL W (1.83) multiple sequence alignment

1j46_A          MQ------DRVKRP---MNAFIVWSRDQRRKMALENPRMRN--SEISKQL
2lef_A          MH--------IKKP---LNAFMLYMKEMRANVVAESTLKES--AAINQIL
1k99_A          MKKLKKHPDFPKKP---LTPYFRFFMEKRAKYAKLHPEMSN--LDLTKIL
1aab_           GK------GDPKKPRGKMSSYAFFVQTSREEHKKKHPDASVNFSEFSKKC

:         *:*   :..:  :    * :     .        :.: 

Col row row TCS
1 1 2 0.762
1 1 3 0.748
1 1 4 0.741
1 2 3 0.651
1 2 4 0.677
1 3 4 0.693
2 1 3 0.562
2 1 4 0.632
2 3 4 0.526
…

TCS
Residue level

Alignment level

Column level



reference alignment

Seq1 …SALMLWLSARESIKREN…YPD…
Seq2 …SAYNIYVSFQ----RESA…KD…
…
Seqn …SAYNIYVSAQ----RENA…KD…

Seq1 …SALMLWLSARESIKREN…YPD…
Seq2 …SAYNIYVSF----QRESA…KD…
…
Seqn …SAYNIYVSA----QRENA…KD…

S

SP1

SP2

confidence1

confidence2

Guidence/TCS

SP1 – SP2 ? confidence1 – confidence2

Test2 - structural modeling @ alignment 
level



Guidance TCS= 71.10% = 83.5% 



Renewing Felsensteinʼs phylogenetic 
bootstrap in the era of big data
• transfer distance, (b,b*) :  a branch b of the reference tree T and a branch b* of 

a bootstrap tree T* is equal to the number of taxa that must be transferred (or 
removed), in order to make both branches identical

• Felsenstein (FBP) and transfer (TBE) bootstrap supports on the same tree with 
9,147 HIV-1M pol sequences

Lemoine, F. et al. Nature 556, 452–456 (2018).



Significantly different output when 
changing sequence input order
• S-o-P comparison vs average identity (Spearman correlation rs = 0.79).
• a high MSA structural accuracy variability vs correlating with MSA 

identity (rs = −0.51)

Maria Chatzou, Evan W Floden, Paolo Di Tommaso, Olivier Gascuel, Cedric Notredame, Systematic Biology, 2018



Regressive algorithm enables MSA of up 
to 1.4 million sequences on

Edgar Garriga et al, Nature Biotechnology 2019
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