Mapping Isheng Jason Tsai

Introduction to NGS Data and Analysis Lecture 3 v2020

Lecture outline

- 1. Background
- 2. Mapping algorithms
- 3. Mapping processes
- 4. Variant calling

Background

High throughput sequencing applications

Figure 1.1 A schematic illustration of the central dogma. Gene 1 has three alternatively spliced transcripts. The relative expression of such transcripts affects the regulatory modules of gene 2, and eventually its expression. Definitions are given in Section 1.1.

Makinen et al

High throughput sequencing applications

Figure 1.2 A schematic summary of high-throughput sequencing applications. Details are described in Section 1.3.

Makinen et al

De novo vs mapping approach

- Mapping is less complicated and more intuitive
- Can gather lots of information from many individuals given a good reference
- But, information on repeats/ gene families / *de novo* genes / large structural variants are more difficult to detect
- **Assembly** is powerful but also computationally demanding And is your question worth the trouble to assemble 100 strains?
- In practice, people do a combination of both approaches
- In humans, *de novo* genomes of references and cancer cells are being generated. In butterflies, many assemblies to reveal super gene

Recommended paper

Technology dictates algorithms: Recent developments in read alignment

Mohammed Alser, Jeremy Rotman, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums, Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul *(Submitted on 28 Feb 2020)*

"...Our review provides a survey of algorithmic foundations and methodologies across alignment methods for both short and long reads. We provide rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read aligners. We separately discuss how longer read lengths produce unique advantages and limitations to read alignment techniques. We also discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology, including whole transcriptome, adaptive immune repertoire, and human microbiome studies. "

https://arxiv.org/ftp/arxiv/papers/2003/2003.00110.pdf Note: a preprint

Preface

Nick Loman @pathogenomenick · Mar 11

Got a talk at ECCMID entitled: "So you've sequenced your (bug) genome ... what now?" Crowdsourcing best answers please, will acknowledge!

• • •	*	•••
RETWEETS 7	FAVORITES 2	See
7	2	etaila

https://twitter.com/pathogenomenick/status/575626319616176128

We all know...

Alan McNally @alanmcn1 · Mar 11 @pathogenomenick @biomickwatson in that case "give it to someone who knows what they are doing!"

Nicki Fawcett @DrNJFawcett · Mar 11 @alanmcn1 @pathogenomenick Clinician thirding/fourthing 'Give it to someone who knows what they're doing'. #ooohYersiniaInEverything

🔸 ቲጉ 🛨 1 🚥

Mick Watson @BioMickWatson · Mar 11 @pathogenomenick ah. Clinician clinicians? Give the data to someone who

knows what to do with it, then ;-)

azizipeasie @AzizAboobaker · Mar 11

@pathogenomenick send it to your bioinformation friend and give them a week to send back a paper with themselves as a middle author.

17 3 🛨 6 🚥

https://twitter.com/pathogenomenick/status/575626319616176128

•

Logical answer

6

azizipeasie @AzizAboobaker · Mar 11 @pathogenomenick sequence some more while your thinking.

...

Esther Robinson @ilovechocagar · Mar 11 @pathogenomenick first law of doing a lab test: don't unless you know what your question is

🔸 🛨 4 📩 2 🚥

13 1

ruth massey @bowsermassey · Mar 11 @WvSchaik @pathogenomenick determine ID, resistance profile and dare I say it....virulence potential!

★ 17 ★ ···

Bill Hanage @BillHanage · Mar 11 @pathogenomenick you've had many good suggestions but it completely depends on what you are interested in. Resistance? Epi? Something else?

· 다 ★ …

https://twitter.com/pathogenomenick/status/575626319616176128

The real cost of sequencing

Long reads are now common

- Most users should and will be mainly analyzing Paired-end Illumina reads (typically 150 bases)
- Pacific Biosciences or Oxford Nanopore (long reads) are increasingly very common

Mapping

Mapping is **aligning** the read to where **the most likely origin** within the reference/assembly

Sequence alignment has not changed and will remain a classic problem Tradeoffs of speed, accuracy and sensitivity

Sequence data we want to map:

- Mostly nucleotide

Very short evolutionary distances (human to reference, isolate/strain to reference, 'slightly diverged' strain will result in less mapped reads) A lot of reads— needs faster processing per read (BLAST is too slow!)

There are some assumptions to make alignment process faster (like allows most 2 mismatches)

PRIMER

How to map billions of short reads onto genomes

Cole Trapnell & Steven L Salzberg

Mapping the vast quantities of short sequence fragments produced by next-generation sequencing platforms is a challenge. What programs are available and how do they work?

All the mappers!

http://www.ebi.ac.uk/~nf/hts_mappers/ (link no longer working; last updated 2018)

Mapper	Data	Availability	Version	O.S.	Number Citations 🔤	Seq.Plat.	Input	Output
BWA	DNA	OS	0.6.2	Linux,Mac,Windows	13341	I,So,4,Sa,P	FASTA/Q	SAM
Bowtie	DNA	OS	0.12.7	Linux,Mac,Windows	11207	I,So,4,Sa,P	(C)FAST(A/Q)	SAM TSV
Bowtie2	DNA	OS	2.0beta5	Linux,Mac,Windows	8586	I,4,Ion	FASTA/Q	SAM TSV
Blat	DNA	OS	34	Linux,Mac	6252	N	FASTA	TSV BLAST
TopHat	RNA	OS	1.4.1	Linux,Mac	3764	1	FASTA/Q GFF	BAM
BWA-SW	DNA	OS	0.6.2	Linux,Mac,Windows	3494	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM
MAQ	DNA	OS	0.7.1	Linux,Mac	2592	l,So	(C)FAST(A/Q)	TSV
Mummer 3	DNA	OS	3.23	Linux,Mac	2446	N	FASTA	TSV
SOAP2	DNA	OS	2.21	Linux	1655	1	FASTA/Q	SAM TSV
SOAP	DNA	OS	1.11	Linux,Mac	1284	I	FASTA/Q	TSV
GSNAP	DNA	OS	2012-04-27	Linux,Unix,Mac,Windows	1156	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM Native
TopHat 2	RNA	OS	2.0.8	Linux,Mac	1102	1	FASTA/Q	BAM
Exonerate	DNA	OS	2.2	Linux,Mac	918	N	FASTA	TSV
Bismark	Bisulfite	OS	0.7.3	Linux,Mac	887	1	FASTA/Q	SAM
SSAHA2	DNA	Bin	2.5.5	Linux,Mac	874	l,4,Sa	FASTA/Q	SAM
SSAHA	DNA	OS	3.1	Linux,Mac	874	N	FASTA/Q	TSV
GMAP	DNA	OS	2012-04-27	Linux,Unix,Mac,Windows	868	I,4,Sa,Hel,Ion,P	FASTA/Q	SAM GFF Native
CloudBurst	DNA	OS	1.1	Linux,Mac,Windows	650	N	FASTA	TSV
MapSplice	RNA	OS	1.15.2	Linux	610	I	FASTA/Q	SAM BED
STAR	RNA	OS	2.3.0	Linux,Unix,Mac	602	I,4,Sa,Ion,P	FASTA/Q	SAM
mrFAST	DNA	OS	2.5.0.1	Linux,Unix	602	1	FASTA/Q	SAM DIVET
SHRiMP	DNA	OS	1.3.2	Linux,Mac	573	I,So,4,Hel	(C)FAST(A/Q)	TSV
BFAST	DNA	OS	0.7.0	Linux,Mac	553	I,So,4, Hel	(C)FAST(A/Q)	SAM TSV
HISAT	RNA	OS	1	Windows, Linux, Unix, Mac	480	I	FASTA/Q	SAM

Heng Li has contributed a dozen of those mappers

Heng Li

Dana-Farber Cancer Institute & <u>Harvard University</u> 在 jimmy.harvard.edu 的電子郵件地址已通過驗證 - <u>首頁</u> Computational Biology Bioinformatics Genomics

	全部	自 2015 年
引文	108019	76196
H 指數	53	50
i10 指數	68	62

Author of maq, bwa, bwa-mem, wtdbg2 and minimap2...

How?

Brute force comparison Smith-Waterman Suffix Tree Burrows-Wheeler Transform

Brute force

TCGATCC ? GACCTCATCGATCCCACTG

1. TCGATCC X GACCTCATCGATCCCACTG 2. TCGATCC X GACCTCATCGATCCCACTG

3. TCGATCC TX GACCTCATCGATCCCACTG

4. TCGATCC GACCTCATCGATCCCACTG

Credit: Mike Zody

Exact matching

What's a simple algorithm for exact matching?

P: word

Try all possible alignments. For each, check whether it's an occurrence. "Naïve algorithm."

Ben Langmead

Mapping (hash table)

Sequencing reads

Identify all the seeds in the index Determine the most likely location Perform Smith-Waterman alignment to fully align Output (important)

Example: BLAST, MAQ (Heng Li 2008)

Suffix tree

But suffix can be very very big if data structure not considered carefully!

Credit: Mike Zody ; Trapnell et al (2009)

Burrows-Wheeler Transform

A transformation that will result in many repeated characters This means it's easy to compress And an elegant way to search!

		Transformation		
Input	All Rotations	Sorting All Rows into Lex Order	Taking Last Column	Output Last Column
^BANANA	^BANANA ^BANANA A ^BANAN NA ^BANA ANA ^BA NANA ^BA ANANA ^B BANANA ^B	ANANA ^B ANA ^BAN A ^BANAN BANANA ^ NANA ^BA NA ^BANA ^BANANA ^BANANA	ANANA ^ B ANA ^ BA N A ^ BANA N BANANA ^ B A NA ^ BAN A ^ BANANA ^ BANANA	BNN^AA A

Original sequence	All permutations	Alphabetical ordering of rows	Output of last column
>BONOBO*	>BONOBO*	BONOBO*>	>
	>BONOBO	BO>BONO	о
	O*>BONOB	NOBO*>BO	о
	BO*>BONO	OBO*>BON	N
	OBO*>BON	ONOBO*>B	В
	NOBO*>BO	O*>BONOB	В
	ONOBO*>B	>BONOBO*	*
	BONOBO*>	*>BONOBO	0

https://link.springer.com/chapter/10.1007/978-3-319-54064-1_6

Inve	erse transformation using	g Burrows-Wheeler tran	sform
Add cycle 1	Sort cycle 1	Add cycle 2	Sort cycle 2
>	В	>B	BO
0	В	OB	BO
0	N	ON	NO
N	0	NO	ОВ
В	0	BO	ON
В	0	BO	0*
*	>	*>	>B
0	*	O*	*>
Add cycle 3	Sort cycle 3	Add cycle 4	Sort cycle 4
>BO	BON	>BON	BONO
OBO	BO*	OBO*	BO*>
ONO	NOB	ONOB	NOBO
NOB	OBO	NOBO	OBO*
BON	ONO	BONO	ONOB
BO*	0*>	BO*>	O*>B
*>B	>BO	*>BO	>BON
0*>	*>B	O*>B	*>BO

https://link.springer.com/chapter/10.1007/978-3-319-54064-1_6

ACCTCATCGATCCCACTG\$G ACTG\$GACCTCATCGATCCC ATCCCACTG\$GACCTCATCG ATCGATCCCACTG\$GACCTC CACTG\$GACCTCATCGATCC CATCGATCCCACTG\$GACCT CCACTG\$GACCTCATCGATC CCCACTG\$GACCTCATCGAT CCTCATCGATCCCACTG\$GA CGATCCCACTG\$GACCTCAT CTCATCGATCCCACTG\$GAC CTG\$GACCTCATCGATCCCA GACCTCATCGATCCCACTG\$ GATCCCACTG\$GACCTCATC G\$GACCTCATCGATCCCACT TCATCGATCCCACTG\$GACC TCCCACTG\$GACCTCATCGA TCGATCCCACTG\$GACCTCA TG\$GACCTCATCGATCCCAC \$GACCTCATCGATCCCACTG

Credit: Mike Zody

- Start with the transform column
- My read starts with a T, so I want rows with Ts in them
- This column gives me all the single nucleotide counts
- Sort the single nucleotide counts to get the alphabetically first column
- Now these two columns give me all the dinucleotide counts
- Sort those to get the alphabetically first two columns
- Now there is only one place my read can match

BWT – a summary

Stores all possible suffixes to enable fast string matching

Much smaller memory footprint than hash table (hash table need to store all different kmers)

Examples: MUMMER, bwa, bowtie2

Trapnell *et al* (2009)

Still need local alignment in final step

b Burrows-Wheeler Short read Reference genome (> 3 gigabases) Chr1 ACTCCCGTACTCTAAT Chr2 Chr3 Chr4 Concatenate into single string Burrows-Wheeler form and indexing Bowtie index (~2 gigabytes) ACTCCCGTACTCTAAT Look up 'suffixes' of read ACTCCCGTACTCTAAT Hits identify positions in genome where read is found ons Convert each hit back to genome location nment to user <

Hash table vs. BWT

Table 1 A selection of short-read analysis software

	Program	Website	Open source?	Handles ABI color space?	Maximum read length
	Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None
BAAI	BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None
	Maq	http://maq.sourceforge.net	Yes	Yes	127
-	Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None
Hash table -	Novoalign	http://www.novocraft.com	No	No	None
-	SOAP2	http://soap.genomics.org.cn	No	No	60
-	ZOOM	http://www.bioinfor.com	No	Yes	240

Trapnell et al (2009)

Hash table vs. BWT strengths and weaknesses

Burrows-Wheeler, e.g. bwa, bowtie

- Fast, esp. (multiple) exact matches
- High sensitivity at repetitive regions
- less robust at high genomic variation (because you need to retry with a substitution)

Hashing (overlapping k-mer words, e.g SMALT, Stampy)

- Slower (more memory hungry)
- Less sensitivity at repetitive regions
- tolerate high genomic variation
- partial alignments (junction reads) easier
- Flexible (multiple sequencing platforms)

Ponstingl and Ning

Choose an mapper/ aligner

Hash based approaches are more suitable for divergent alignments General rule:

<2% divergence -> BWT

E.g. human samples

>2% divergence -> hash based approach

E.g. wild sample alignments ;

Watch out for latest advancement ; and don't stay at one for too long

Credit: Golden Helix inc

Baker (2012)

What to do with repetitive (multi) reads?

Figure 2 | **Three strategies for mapping multi-reads.** The shaded rectangles at the top represent intervals along a chromosome. The two blue rectangles below each region represent an identical two-copy repeat containing the paralogous genes A and B. The small orange bars represent reads aligned to specific positions. **a** | The 'unique' strategy reports only those reads that are uniquely mappable. Because A and B are identical, no alignments are reported. **b** | The 'best match' alignment strategy reports the best possible alignment for each read, which is determined by the scoring function of the alignment algorithm. In the case of ties, this strategy randomly distributes reads across equally good loci, as shown here. **c** | The 'all matches' strategy simply reports all alignments for each multi-read, including lower-scoring alignments.

Treangen *et al (*2012)

What about long read mapping?

- **BLASR** and **Daligner** designed for long error-prone (but random) reads (PacBio)
- Now there's alternative such as GMAP and minimap2 which are much faster

https://doi.org/10.1186/1471-2105-13-238

What about long read mapping?

- BLASR
- One of the first tools in long read alignments (meaning it's easier to understand)
- Combines multiple methods
- Starts by finding short exact matches using suffix or B-W
- Next locally identifies a linear chain of shorter exact matches
- Performs banded Smith-Waterman constrained by the shorter exact matches

https://doi.org/10.1186/1471-2105-13-238
Minimap2 – the most popular tool to use in long read alignment

- 1. Read -I [=4G] reference bases, extract (-k,-w)-minimizers and index them in a hash table.
- 2. Read **-K** [=200M] query bases. For each query sequence, do step 3 through 7:
- 3. For each (-k,-w)-minimizer on the query, check against the reference index. If a reference minimizer is not among the top -f [=2e-4] most frequent, collect its the occurrences in the reference, which are called *seeds*.
- 4. Sort seeds by position in the reference. Chain them with dynamic programming. Each chain represents a potential mapping. For read overlapping, report all chains and then go to step 8. For reference mapping, do step 5 through 7:
- 5. Let *P* be the set of primary mappings, which is an empty set initially. For each chain from the best to the worst according to their chaining scores: if on the query, the chain overlaps with a chain in *P* by **--mask-level** [=0.5] or higher fraction of the shorter chain, mark the chain as *secondary* to the chain in *P*; otherwise, add the chain to *P*.
- 6. Retain all primary mappings. Also retain up to **-N** [=5] top secondary mappings if their chaining scores are higher than **-p** [=0.8] of their corresponding primary mappings.
- 7. If alignment is requested, filter out an internal seed if it potentially leads to both a long insertion and a long deletion. Extend from the left-most seed. Perform global alignments between internal seeds. Split the chain if the accumulative score along the global alignment drops by -z [=400], disregarding long gaps. Extend from the rightmost seed. Output chains and their alignments.
- 8. If there are more query sequences in the input, go to step 2 until no more queries are left.
- 9. If there are more reference sequences, reopen the query file from the start and go to step 1; otherwise stop.

https://github.com/lh3/minimap2

1 Indexing

2-4 Collect and sort seeds

5-7 Reference mappings

Note: It is the backbone of many assemblers and applications

What about even longer mappings (genome vs genome)

RESEARCH ARTICLE

MUMmer4: A fast and versatile genome alignment system

Guillaume Marçais^{1,2}*, Arthur L. Delcher³, Adam M. Phillippy⁴, Rachel Coston³, Steven L. Salzberg^{3,5}, Aleksey Zimin^{1,3}*

Aligner	Graphical User Interface	Multi-platform Windows/Linux	Multi- threaded	Callable from C++, scripting languages	Whole genome aln.	Short read aln.	Long read aln.	SAM format output	P-value output
MUMmer4			✓	✓	✓	✓	✓	✓	
MUMmer3					✓				
Blast	✓	✓	✓		✓				√
Blat					✓				√
Mauve	√	√			✓				
LASTZ					✓			✓	√
bwa-mem			✓		-	✓	✓	✓	
Bowtie2			✓		-	✓	-	✓	
BLASR			✓		-	-	✓	✓	✓

What about even longer mappings (genome)

RESEARCH ARTICLE

PLOS COMPUTATIONAL BIOLOGY

MUMmer4: A fast and versatile genome alignment system

Guillaume Marçais^{1,2}*, Arthur L. Delcher³, Adam M. Phillippy⁴, Rachel Coston³, Steven L. Salzberg^{3,5}, Aleksey Zimin^{1,3}*

		Arabidopsis	Tardigrade	Human/Chimp
nucmer4	Wall time (min)	3.7	4.0	207
	CPU time (min)	22	26	2897
	Memory (GB)	4.6	4.9	66
Mauve	Wall time (min)	41	273	> 2 days
	CPU time (min)	38.6	268	> 2 days
	Memory (GB)	3.3	4.0	> 2 days
LASTZ default	Wall time (min)	1122	> 2 days	> 2 days
	CPU time (min)	1113	> 2 days	> 2 days
	Memory (GB)	1.3		
LASTZ match	Wall time (min)	66	77	> 2 days
	CPU time (min)	66	76	> 2 days
	Memory (GB)	0.6	0.4	

Mapping algorithm – a summary

Build an index of your reference

Align your reads to your index Choose an aligner! Bowtie2, BWA-MEM, SMALT Minimap2, GMAP, MUMMER4 (Pacbio or Nanopore)

As reads get longer, there seems to be a new generation of mappers arriving

Use the output to do subsequent analysis What's the output? How to use this output?

Feature	Hash table index tools	BWT tools
Speed	Slower	Faster
Memory	Higher	Lower
Sensitivity	Higher	Lower

Mapping algorithm – a summary

- Improvement in both indexing and seed searching
- Allows more applications to be developed

https://arxiv.org/ftp/arxiv/papers/2003/2003.00110.pdf

Note: a preprint

For your reference – speedups in various alignment algorithms including BLAST •

Fast and sensitive protein alignment using **DIAMOND**

Benjamin Buchfink¹, Chao Xie^{2,3} & Daniel H Huson^{1,2}

The alignment of sequencing reads against a protein reference database is a major computational bottleneck in metagenomics and data-intensive evolutionary projects. Although recent tools offer improved performance over the gold standard BLASTX, they exhibit only a modest speedup or low sensitivity. We introduce DIAMOND, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.

- Improvement in both indexing and seed searching
- Allows more applications to be developed •

Most sequence comparison programs, including BLASTX and RAPSearch2, use single consecutive seeds, which need to be short (length 3-6 amino acids) to ensure sensitivity. To increase speed without losing sensitivity, DIAMOND uses spaced seeds-that is, longer seeds in which only a subset of positions are used^{9,10}. The number and exact layout of those positions are called the weight and shape of the spaced seed, respectively. To achieve high sensitivity, DIAMOND uses a set of four carefully chosen shapes¹¹ of length 15–24 and weight 12 by default. The most sensitive version of DIAMOND uses 16 shapes of weight 9. In addition, DIAMOND uses a reduced amino acid alphabet of size 11 to enhance sensitivity¹². A simple exact match criterion determines which seeds are passed on to the extension phase, in which a Smith-Waterman alignment¹³ is computed.

In a recent metagenomic study of 12 permafrost samples¹⁴, a BLASTX comparison of 176 million high-quality DNA reads against the KEGG reference database³ was reported to require 800,000 CPU hours at a supercomputing center¹⁵. When we used DIAMOND with its default settings, the analysis of all 246 million reads took 2.3 h on a single workstation, producing a total of 568.9 million alignments on 43 million reads.

Mapping process

Back to the beginning: FASTQ

@HISEQ:409:HA7CJADXX:1:1101:1202:2113 1:N:0:GCNAAT Read ID
AAAAAAGTTTCCATACAATTACAAGCATCACACTGTGGGCATGCACTTGGGGAAAGAAG
+
=?DBD@<AA<ADAFHGGE<ECHHCG+:1::?D;G4::?BBGCFHI<BCCC;FCGC96 Quality score</pre>

Example of Empirically Quality Score Error Probability Q-Score Bins Mapped Q-Scores* N (no call) N (no call) Q40 0.0001 (1 in 10,000) 2 - 96 Q30 0.001 (1 in 1.000) 10 - 1915 Q20 0.01 (1 in 100) 20 - 2422 Q10 0.1 (1 in 10) 25 - 2927 30 - 3433 35 - 3937

 ≥ 40

40

http://www.illumina.com/content/dam/illuminamarketing/documents/products/technotes/technote_under standing_quality_scores.pdf

QC first - always always the first step

- Contamination! *
- Is it of good quality?
 - Read quality
 - Adaptor contamination
 - Insert size distribution
 - PCR duplicate rate
- Is it your species or someone else's (sample swap)?

Sequence quality - FastQC

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Basically the adaptor sequence can appear everywhere (but in a logic way)

Composition of example library templates from a mate pair experiment. For each example (a–e), the position of the junction adapter sequence is shown in green and the mapping orientation (either FR or RF, 'forward-reverse' and 'reverse-forward', respectively) of the resulting read pairs is shown to the right. Sections of genomic DNA sequence are shown in blue and the TruSeq adapter sequences are shown in purple and grey. Amplification/sequencing primer adapters are shown in grey and purple.

FastQC will offer some insights in adaptor

TACAGAGG overrepresented – what is it?

Overrepresented sequences							
Sequence	Count	Percentage	Possible Source				
AGCAGCATTGTACA	3398	3.398	No Hit	-			
TACAGTCCGACGAT	1814	1.814	Illumina PCR Prime				
TCTACAGTCCGACG	1570	1.57	RNA PCR Primer, In				
TATTGCACTTGTCCC	1421	1.421	No Hit				
ITCTACAGTCCGAC	1181	1.181	RNA PCR Primer, In				
CTACAGTCCGACGA	1168	1.168	Illumina PCR Prime				
CATTGCACTTGTCTC	839	0.839	No Hit	=			
ACAGTCCGACGATC	835	0.835	RNA PCR Primer, In				
AGTTCTACAGTCCG	648	0.648	Illumina PCR Prime				
AAAGTGCTGCGACA	491	0.491	No Hit				
TCGTATGCCGTCTT	465	0.465	Illumina Single En				
CAGTCCGACGATCT	436	0.436	Illumina PCR Prime				
TNNNNNNNNNNNN	392	0.392	No Hit				
TAGCTTATCAGACT	388	0.388	No Hit				
TATTGCACTCGTCC	366	0.366	TruSeq Adapter, I				
ACCGGGCGGAAAC	357	0.357	No Hit				
ANNNNNNNNNNNNN	355	0.355	No Hit				
GTTCTACAGTCCGA	353	0.353	Illumina PCR Prime				
AAGTGCTGCGACAT	241	0.241	No Lit				

Trimmomatic for quality and adaptor trimming (many other tools also exist)

Trimmomatic: a flexible trimmer for Illumina sequence data - NCBI - NIH https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103590/ ▼翻譯這個網頁

由 AM Bolger 著作 - 2014 - 被引用 5183 次 - 相關文章

2014年4月1日 - Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more ...

Bolger *et al.*, (2014)

Check what your samples contain - Blobology

https://github.com/blaxterlab/blobology

Source of contamination

- Difficult to remove (gut from microorganisms)
- Fail to remove
- Not careful
- Bad company
- Sequencer carry over (from previous run)
- Sample (barcode) mix up

Salter et al. BMC Biology 2014, 12:87 http://www.biomedcentral.com/1741-7007/12/87

• Or simply bad day (not your fault)

RESEARCH ARTICLE

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Source of contamination

Mukherjee et al. Standards in Genomic Sciences 2015, 10:18 http://www.standardsingenomics.com/content/10/1/18

COMMENTARY

Open Access

Large-scale contamination of microbial isolate genomes by Illumina PhiX control

Supratim Mukherjee^{1*}, Marcel Huntemann¹, Natalia Ivanova¹, Nikos C Kyrpides^{1,2} and Amrita Pati¹

....In this study we screened over 18,000 publicly available microbial isolate genome sequences in the Integrated Microbial Genomes database and identified more than 1000 genomes that are contaminated with PhiX, a control frequently used during Illumina sequencing runs.The presence of PhiX contamination in several publicly available isolate genomes can result in additional errors when such data are used in comparative genomics analyses. Such contamination of public databases have far-reaching consequences in the form of erroneous data interpretation and analyses, and necessitates better measures to proofread raw sequences before releasing them to the broader scientific community.

Sample storage matters (case of humans)

3 months storage resulted in less efficient DNA extraction

High fragmentation: loss of material Decrease in library complexity High increase in PCR duplicates, 60-85% for FFPE vs. 30% for FF

C > U deamination is a common cause of artifacts

U-tolerant polymerase didn't help Pattern, T <> C, A <> G transition

The fraction of mapped reads decreases with storage time

Increase in partial mappings

Increase in gapped mappings

Mapping output format: SAM/BAM

Spec defined by maq/bwa/samtools author Heng Li

SAM: text version tab-delimited Exome (GBs) ; Whole genome (TBs)

BAM: binary/compressed version indexed so it's faster to look up using samtools Exome (1-2GBs) ; Whole genome (GBs)

SAM file header

@HD	VN:1.4 SO:coord	dinate	
esq	SN:PNOK.scaff000	01.C	LN:7761079
esq	SN:PNOK.scaff000	02.C	LN:4533150
esq	SN:PNOK.scaff000	03.C	LN:3409659
@SQ	SN:PNOK.scaff000	04.0	LN:3380754
@SQ	SN:PNOK.scaff000	05.0	LN:2749859
@SQ	SN:PNOK.scaff000	06.0	LN:2613677
@SQ	SN:PNOK.scaff000	07.0	LN:1690816
esq	SN:PNOK.scaff000	08	LN:1673160
esq	SN:PNOK.scaff000	0.00	LN:1538597
esq	SN:PNOK.scaff00	10	LN:1377172
@SQ	SN:PNOK.scaff00	11	LN:633856
@SQ	SN:PNOK.scaff00	12	LN:52253
esq	SN:PNOK.mito	LN:16344	43
@PG	ID:smalt	VN:0.7.4	4 CL:/h

Always start with @

Contains "background" information

@HD = Header @SQ = Sequence dictionary

SAM file header

Very detailed in how one should specify the headers

Subsequent programs (like variant calling) will use these info

http://samtools.github.io/htsspecs/SAMv1.pdf

Ta	ıg	Description						
GH	D	The header line. The first line if present.						
İΓ	VN*	Format version. Accepted format: /^[0-9]+\.[0-9]+\$/.						
11	SO	Sorting order of alignments. Valid values: unknown (default), unsorted, queryname and						
		coordinate. For coordinate sort, the major sort key is the RNAME field, with order defined						
		by the order of @SQ lines in the header. The minor sort key is the POS field. For alignments						
		with equal RNAME and POS, order is arbitrary. All alignments with '•' in RNAME field follow						
		alignments with some other value but otherwise are in arbitrary order.						
1 [GO	Grouping of alignments, indicating that similar alignment records are grouped together but the						
		file is not necessarily sorted overall. Valid values: none (default), query (alignments are grouped						
		by QNAME), and reference (alignments are grouped by RNAME/POS).						
¢\$	Q	Reference sequence dictionary. The order of QSQ lines defines the alignment sorting order.						
ΙΓ	SN*	Reference sequence name. Each @SQ line must have a unique SN tag. The value of this field is used						
ΙL		in the alignment records in RNAME and RNEXT fields. Regular expression: [!-)+-O-"][!-"].						
10	LN*	Reference sequence length. Range: [1,2 ³¹ -1]						
ΙC	AS	Genome assembly identifier.						
ΙC	M5	MD5 checksum of the sequence in the uppercase, excluding spaces but including pads (as '*'s).						
ΙC	SP	Species.						
ΙΓ	UR	URI of the sequence. This value may start with one of the standard protocols, e.g http: or ftp:.						
ш		If it does not start with one of these protocols, it is assumed to be a file-system path.						
CR	G	Read group. Unordered multiple GRG lines are allowed.						
	ID*	Read group identifier. Each GRG line must have a unique ID. The value of ID is used in the RG						
		tags of alignment records. Must be unique among all read groups in header section. Read group						
1 1		IDs may be modified when merging SAM files in order to handle collisions.						
1 1	CN	Name of sequencing center producing the read.						
1 1	DS	Description.						
1 1	DT	Date the run was produced (ISO8601 date or date/time).						
	FO	Flow order. The array of nucleotide bases that correspond to the nucleotides used for each						
		flow of each read. Multi-base flows are encoded in IUPAC format, and non-nucleotide flows by						
1 1		various other characters. Format: //+[[ACMGRSVTWYHKDBN]+/						
1 1	KS	The array of nucleotide bases that correspond to the key sequence of each read.						
1 1	LB	Library.						
1 1	PG	Programs used for processing the read group.						
1 1	P1	Predicted median insert size.						
	PL	Platform/technology used to produce the reads. Valid values: CAPILLARY, LS454, ILLUMINA,						
1 1	DM	SOLID, HELICOS, IONTORRENT, ONT, and PACEIO.						
1 1	PM	Platform model. Free-form text providing further details of the platform/technology used.						
1 1	PU	Platiorin unit (e.g. nowcen-barcode lane for infumina or side for SOLID). Unique identifier.						
	SR .	Sample. Use pool name where a pool is being sequenced.						
	U TD*	Program. Descream assent identifier. Each 402 line must have a unique TD. The value of TD is used in the						
11	10.	Program record identifier. Each ard the must have a unique 10. The value of 10 is used in the						
		fles in order to handle collisions						
1 1	DN	Departum nome						
Ιŀ	CI	Command line						
1 L	6L	Command me						

SAM file mapping

Sorted by chromosome position

SAM file mapping

SAM file spec

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,254}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0, 2^{31} - 1]$	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	$[0, 2^{31} - 1]$	Position of the mate/next read
9	TLEN	Int	$[-2^{31}+1, 2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

SAM file mapping

Col	Field		
1	QNAME	HWI-M01162:89:	00000000-AC0DK:1:2103:24027:15590
2	FLAG	163	
3	RNAME	PNOK.scaff0001	.C
4	POS	539	Storing everything means fastq can be
5	MAPQ	60	deleted (if you are not going to try different
6	CIGAR	300M	aligners and have same pipeline)
7	RNEXT	=	
8	PNEXT	680	
9	TLEN	441	CGATAACAAATAATCACATGGTATGTTTCTATTGTCACTACAAGATTACTGATCATTCCATTTGCAACGATGG CGTGATCCTCGCATCATACAATTACTAACTAAGGAGACCTGACGAGTATTTATACCAAAGAGGTCTACAGGA GAGGGGAGTCAAATCCCCCACCTCTCGTCTCTTAGATCCTCCATTACCTCGCTTCGCTGCGCTCAGCTTC
10	SEQ		GAACCTAATAGTTAAGTGTCACGTGATTAGGATTAGTAAGCAAATTACTTAATCATATGGTCACTAATATGCT TTGTCATAGAT
11	QUAL		B>>FFFFFFFFFFFFFFFFFFFFFFFFFFFFFGC4FGFFGGFFCGGGGGGGG
			GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

SAM flags

hexadecimal	decimal	binary bit; 0=no, 1=yes	position of bit	description
0x1	1	"0000 0000 0001"	1	paired-end (or multiple-segment) sequencing technology
0x2	2	"0000 0000 0010"	2	each segment properly aligned according to the aligner
0x4	4	"0000 0000 0100"	3	segment unmapped
0x8	8	"0000 0000 1000"	4	next segment in the template unmapped
0x10	16	"0000 0001 0000"	5	SEQ is reverse complemented
0x20	32	"0000 0010 0000"	6	SEQ of the next segment in the template is reverse complemented
0x40	64	"0000 0100 0000"	7	the first segment in the template
0x80	128	"0000 1000 0000"	8	the last segment in the template
0x100	256	"0001 0000 0000"	9	secondary alignment
0x200	512	"0010 0000 0000"	10	not passing quality controls
0x400	1024	"0100 0000 0000"	11	PCR or optical duplicate
0x800	2048	"1000 0000 0000"	12	supplementary alignment

http://gatkforums.broadinstitute.org/gatk/discussion/7019/s am-flags-down-a-boat

CIGAR String a few examples

ATCGATCGATCGATCG Reference ATGGACGATTCGTGAA Read mapping = 5M1D3M1I3M4S

203M1D4M1I48M1I13M 164M 232M 159M 162M1D4M1I43M 101M7S 227M 155M 105M

Soft clip usually the result of lower mapping quality

ор	Description
м	Alignment match (can be a sequence match or mismatch
I	Insertion to the reference
D	Deletion from the reference
Ν	Skipped region from the reference
s	Soft clip on the read (clipped sequence present in <seq>)</seq>
н	Hard clip on the read (clipped sequence NOT present in <seq>)</seq>
Ρ	Padding (silent deletion from the padded reference sequence)

CIGAR string of long reads

9368d6b3-3242-4583-a37c-8ecbfa44ccee 0 ref2.scaff0001 1 60 1574S76M1D12M6D17M1D0M1D3M1D6M4D2M1D6M1D16M2D20M1I10M1I5M1I5M4D4M1D3M1I12M1D42M2D7M1I 13M1T15M2I5M1I4M1I8M3D10M3D9M1D4M1I6M1D4M1D5M1I11M1D13M1D10M2D18M4I11M2I13M1D6M1D2M3D13M1D14M2D2M5D26M2D4M2D11M1I8M1I4M1I6M1D8M1D3M2D3M1I41M1I14M1D10M1D3M2D3M1D54M2D2M1D 7M1I6M5D12M2I2M1I12M2I2M1D16M1I1M2I5M1I19M1D9M1D2M1D7M1I15M1D9M2D12M1I7M2I2M1D3M1D8M1I13M1D5M1D6M1D2IM3I4M1I8M1I15M3D1M2D18M3D10M1D5M1D9M1D2M1D7M2D1M1I2ZM4D2M1D3M2D14M1I1M1 15M2I5M1D2M1D10M1D11M2D6M1I11M5I11M1I6M1D19M8I14M1I10M1I27M3I14M2D5M1D6M1I4M3D2M1I28M1D17M2I13M3D23M2D5M4D1M2D9M3I16M1D17M2D11M1I14M1D16M1D2M1D7M2D10M1I1M1I11M1I22M1 54M1D9M1I9M2I9M1I3M1I14M2D7M1D4M1D7M5D1M1D14M1I15M1D3M1I9M2D13M1I4M1D5M2D10M2D1M2D1M3D16M2I4M1I5M1D3M1I17M2D6M5D46M4D14M5D4M1D21M3D45M1D17M2D5M2D1M1D2M4D30M1D29M3I9M 1D7M1D15M1I42M2I7M1D10M1I9M1D3M1D3M1D5M4D16M4I13M1D29M1D4M3D6M1I35M6D20M6I4M1I6M3D16M1D7M1I34M1D11M4D21M1D23M2D1M1D35M4D12M1D6M1I2M1I25M1D13M1I35M2D11M3D20M5D2M1D2M1D3 112M2D3M2D21M3I31M1D37M3D6M1D13M1D35M1I17M1D5M3I16M1I71M1I1M1I2M1I4M1I5M1I19M4D35M2D32M1D28M1I7M2I8M1I6M1I14M1D5M2D10M1D6M1I3M1D35M2D12M1D35M4D12M1D25M2D1M1D35M4D12M1D35M4D12M1D35M4D12M1D35M2D1M1D35M2D1M3D20M5D2M1D9M1D 15M2D1M1D16M1I5M1I30M4I6M2I9M1I5M1D3M1D35M1I17M1D5M3I6M1I71M1I1M1I2M1I4M1I5M1I19M4D35M2D32M1D28M1I7M2I8M1I6M1I14M1I6M5D2M2D12M1I6M1D11M1D17M3I28M2I2M1D8M2I6M2D3M1D9M1D 15M2D1M1D16M1I5M1I30M4I6M2I9M1I5M1D26M2D2M3D3M1M4M1I13M2D21M5D5M2D10M4D17M1D24M1D1M1D6M4D15M1I20M1D32M1D6M5D22M2I11M1I35M2D7M1D43M2D10M1D6M2I8M1D5M1D9M5D2M1D9M1D9M1D 035M3I1M1I9M1D9M3D5M3D5M3D5M3D19M1I23M2D17M1I4M1BM1D3M2I11M3I2M2D1M04D17M1D24M1D1M1D2M2D14M1D4M1D3M2I20M2D14M1D3M1D23M1I3M1I20M2I14M2D3M1D3M1D5M4D19M1D23M1D3M1D3M1D3M1D3M1D3M1D3M1D5M4D1M1D5M1D22M2D3M1D9M1D10 M6D3M1D2M1D21M1I22M1I6M1I3M2I2M1I7M1D8M1D32M1I3M3D39M5D25M1D1M1D9M2D6M2I4M1D47M1D4M1D3M1D23M1D3M1D3MD23M1D3M1D5M4D8M2I5M1D2M2D3M1D9M1D6M72S *

2048 606ec45a-9559-4dcc-8901-f39b24c67e21 ref2.scaff0001 1 60 15175H9M2D7M1D5M1D2M1D25M1D22M1D8M1D30M1D9M2D14M2D12M1D29M1D9M1T4M2D1M1D2M5D12M1D7M1T7 D5M1D7M3D1M1D14M2T4M1T21M1T72M1T12M1T28M1T6M1D28M1D8M2D5M1T8M3D2M5D6M1D58M1T29M1D17M1D3M1D10M1D11M2D2M1D11M3D9M1D2M4D8M2D11M2T12M5D47M8D9M3D24M1T16M1T22M1D55M1D24M1T2 0 M 2D13 M 2D2 M 1D61 M 1D1 M 1D13 M 1D7 M 1T4 M 5D6 M 2D42 M 1T17 M 1T3 M 1D20 M 1T14 M 3D25 M 2T5 M 1D22 M 1D11 M 8D11 M 1D10 M 5D3 M 1D12 M 1D30 M 2T5 M 1D30 M 2T5 M 1D10 M 1T9 M 2T13 M 1D6 M 1T3 M 2T8 M 1D4 M 1D1 M 3D 29 M 2D20 M 3 D 9 M 1 D 2 5 M 1 D 1 M 1 D 1 8 M 1 D 3 M 1 D 2 5 M 2 D 8 M 1 D 2 7 M 2 D 7 M 2 D 3 M 1 D 6 M 1 D 1 M 3 D 3 M 2 D 1 4 M 2 D 1 6 M 1 T 1 9 M 1 D 4 M 2 T 3 M 1 D 4 M 1 D 2 5 M 1 D 8 M 3 D 8 M 4 D 1 M 5 D 8 M 1 T 1 5 M 2 D 1 6 M 2 D 2 1 M 1 D 5 M 3 D 5 1 M 1 T 5 M 1 T 1 0 M 1 T 1 4 M 1 D 2 M 1 T 2 7 M 1 D 4 7 M 1 D 4 M 2 T 3 MM1D35M2D17M3D1M2D4M1D5M2D18M4D6M3D2M3D7M4D10M1T2M1D19M2D21M1T8M3T16M1T12M1D6M2D23M1D12M1D3M3T32M2T8M2T11M4T2M1D7M1D33M2D17M2D2M2D9M1T12M5D40M2D35M1D11M1T11M3D1M2D41M14M1T22M2D40M1T6M3D19M1D17M1T20M5D27M2D7M1D5M1D3M3D5M2T16M1D12M1D4M5D12M1T4M1D6M1D5M1D3M2D17M3T4M1T27M1T22M1D11M1D14M1T35M1D23M3D13M1D10M14D16M1T10M1D14M1T6M1D3M1D28M1 T7M1T11M1T7M2D12M4D27M1D7M1D1M3D5M1D9M3T24M2D7M3D21M1D8M1D30M1T14M7D9M2D39M1T27M3T4M1D15M1T2M2T25M1D8M2D13M1D29M4D3M6D43M3D1M3D36M1D2M1D16M1D16M1D5M1D8M1D5M1T20M2D6M1D7M4D3M1D10M1T13M1D8M1D2M1T1M1T4M1D24M2D12M1D10M1D2M3D8M1T10M2D5M1D10M1D9M1T13M1T4M1T3M3D7M2T13M1T6M1T7M2D3M1D24M4T5M1T9M1D8M1T13M1T8M1D35M1D22M6D7M3D3M8D6M3D22M20148

Mapping quality

Probability that a read is mapped incorrectly

Useful for calling SNP later on

Function of Uniqueness Number of mismatches Number of indels Quality of bases in read

MQ30 = 1 in 1000 alignment is wrong MQ40 = 1 in 10000 alignment is wrong

Post mapping QC: insert size in PE mapping?

DNA fragment length should be longer than most repeat size in your genome No point to boost up coverage if your fragment len < repeat lengtg

Insert size

Post mapping QC – how much coverage?

Total reads:	2963812	
Mapped reads:	2926492	(98.7408%)
Forward strand:	1463708	(49.386%)
Reverse strand:	1462784	(49.3548%)
Failed QC:	0 (0%)	
Duplicates:	8469 (0.28574	17%)
Paired-end reads:	2963812	(100%)
'Proper-pairs':	2808018	(94.7435%)
Both pairs mapped:	2901342	(97.8922%)
Read 1:	1481906	
Read 2:	1481906	
Singletons:	25150	(0.848569%)
Average insert size	e (absolute va	alue): 808.327
Median insert size	(absolute val	lue): 466

2963812 reads x 300 bp per read / 3200000bp genome = **27.8X**

This number is overestimated because

- 1. ~1.3% not mapped
- 2. Trimmed reads (not all reads have now 300bp)

Barnett et al., (2011) bamtools

1 million dollar question: how much coverage is better

In mapping:

- ~15X for SNP calling in bacteria
- ~30X for SNP calling in diploid (to delineate heterozygous bases)
- >50X for exome (because you need to be sure)
- No point with >100X in the Illumina world

PCR duplicates

PCR duplicates during sample prep

= the same fragment is sequenced again and again and again

Some worse than others (because starting material is not good) < 5% is good

High duplication rate will lead to problems in downstream analysis Example: 30X ; 1 out of ~30 fragment get duplicated 15 times

- = skew allele frequency
- = false SNP discovery

Can be detected (and removed) by read pairs map at the complete position. We usually keep one copy only

PCR duplicates

Can be detected (and removed) by read pairs map at the complete position. **We usually keep one copy only**

X = sequencing error propagated in duplicates

Broad - GATK

De- duplication

Total count: 32 A:0 C:0 G:0 T: 32 (100%, 21+, 11-) N:0

Broad - GATK

Showing duplicate reads

Hiding duplicate reads

Case study: Check lane quality and assembly

	Total reads	Mapped reads (%)	Duplicates	Proper-pairs	Both pairs mapped	Median
BRC PE	217,190,726	95.80%	1.47%	53.97%	92.85%	968
Old PE	249,742,439	4.40%	1.51%	2.81%	3.08%	59
Old PE	1,167,521,211	98.21%	11.81%	68.97%	97.18%	465
Old PE	917,638,787	97.97%	5.12%	75.54%	96.99%	261
Company hmm	38,508,236	94.15%	7.51%	48.22%	90.53%	1681
Company hmm	76,992,221	95.09%	10.75%	48.57%	92.43%	1675
Company hmm	26,348,302	93.54%	6.23%	47.58%	89.29%	1681
Company hmm	398,746,361	98.42%	79.36%	57.28%	97.23%	1500
Company hmm	396,241,991	98.42%	79.03%	57.31%	97.24%	1500
Company hmm	39,879,176	92.45%	29.40%	40.66%	88.55%	4623
Company hmm	43,010,934	92.10%	31.27%	40.40%	87.99%	4623
Company hmm	316,963,201	97.71%	84.14%	57.79%	96.11%	410
Company hmm	71,118,483	96.00%	70.88%	42.97%	93.67%	283
Company hmm	61,803,780	94.60%	73.18%	45.36%	91.55%	285
Case study: Check lane quality and assembly

PE from one	of my projects	6									
Directory	TotalReads	MappedReads	MappedReads(%)	ForwardStrand	ForwardStrand(%)	ReverseStrand	ReverseStrand(%)	FailedQC	FailedQC(%)	Duplicates	Duplicates(%)
map.718-S1	3171334	2920504	92.09%	1461181	46.07%	1459323	46.02%	0	0%	28099	0.89%
map.KPN91	2963812	2926683	98.75%	1463794	49.39%	1462889	49.36%	0	0%	8464	0.29%
map.KPN92	38811800	37864479	97.56%	18931099	48.78%	18933380	48.78%	0	0%	614696	1.58%
map.NTU	151505774	140827017	92.95%	70410162	46.47%	70416855	46.48%	0	0%	72381797	47.77%
MP from a con	npany in Japar	(Nextera)									
3kb.map	29432914	28598764	97.17%	14280601	48.52%	14318163	48.65%	0	0%	2369419	8.05%
5kb.map	8887196	8436683	94.93%	4208676	47.36%	4228007	47.57%	0	0%	1455786	16.38%
MP from anoth	ner institute										
Directory MP.2kb MP.4kb MP.6kb MP.9kb	TotalReads 87149392 92488172 79969510 63262972	MappedReads 61884157 60082343 50558184 44161175	MappedReads(%) 71.01% 64.96% 63.22% 69.81%	ForwardStrand 31033842 30124954 25273991 22132740	ForwardStrand(%) 35.61% 32.57% 31.60% 34.99%	ReverseStrand 30850315 29957389 25284193 22028435	ReverseStrand(%) 35.40% 32.39% 31.62% 34.82%	FailedQC 0 0 0 0	FailedQC(%) 0% 0% 0% 0%	Duplicates 6893810 6688542 3919754 6938278	Duplicates(%) 7.91% 7.23% 4.90% 10.97%
a project from	BRC										
Directory	TotalReads	MappedReads	MappedReads(%)	ForwardStrand	ForwardStrand(%)	ReverseStrand	ReverseStrand(%)	FailedQC	FailedQC(%)	Duplicates	Duplicates(%)
MP10kb.map	4809196	4757184	98.92%	2380384	49.50%	2376800	49.42%	0	0%	31589	0.66%
MP15kb.map	4557418	4492023	98.57%	2247623	49.32%	2244400	49.25%	0	0%	101159	2.22%
MP4kb.map	5349212	5266083	98.45%	2633803	49.24%	2632280	49.21%	0	0%	26721	0.50%
MP6kb.map	5185824	5129611	98.92%	2566177	49.48%	2563434	49 43%	0	0%	30809	0.59%

Quail et al 2012

Platform specific biases

Quail et al 2012

Experiment biases

Figure 5. Distribution of GC content in sequenced reads of (A) short- and (B) long-insert libraries.

Tsai *et al* 2014

Mapping output: A summary

There is a lot you can do from the initial mapping output Post mapping QC Assembly QC

At this point you should decide whether it's a good run and you can go ahead to the next stage you need additional run you need to abandon the whole run

Variant calling

Variant calling

You have just:

Mapped the reads to where they belong (supposedly) Provided accurate mapping quality scores

Next:

Give the correct file (**BAM**) to variant callers

How to determine the above are correct?

SNP discovery

Heterozygous and homozygous SNP

10X

ATCGATGACTGACTGAATGGTTGAC ATCGATGACTGACTGAATGGTTGAC ATCCATGACTGACTGAATGGTTGAC ATCGATGACTGACTGAATGGTTGAC ATCGATAACTGACTGAATGGTTGAC ATCGATGACTGAGTGAATGGTTGAC ATCGATGACTGAGTGAATGGTTGAC ATCGATGACTGAGTGAATGGTTGAC ATCGATGACTGAGTGAATGGTTGAC ATCGATGACTGAGTGAATGGTTGAC

...ATCGATGACTGACTGACTGGTTGAC...

reference

INDELS (insertion deletions) and Structural variations

Indel examples

wild-type sequence ATCTTCAGCCATAAAAGATGAAGTT

3 bp deletion ATCTTCAGCCAAAGATGAAGTT

4 bp insertion (orange) ATCTTCAGCCATATGTGAAAGATGAAGTT

SNP Discovery: Base Qualities

Michael Strömberg

SNPs & Bayesian Statistics

Michael Strömberg

Strategies that improve variant calling

Local realignement

HiSeq data, raw BWA alignments

HiSeq data, after MSA

DePristo et al. Nat Genet 2011

Local realignement - principle

1. Find the best alternate <u>consensus sequence</u> that, together with the reference, best fits the reads in a pile (maximum of 1 indel)

2. The score for an alternate consensus is the total sum of the quality scores of mismatching bases

3. If the score of the best alternate consensus is sufficiently better than the original alignments (using a LOD score), then we accept the proposed realignment of the reads

GATK, Broad

Base quality recalibration

- Quality scores are critical for all downstream analysis
- Systematic biases are a major contributor to bad calls

BQSR method identifies bias and applies correction

GATK, Broad

Improve beyond analysis-ready reads

Using haplotypes for base calling

Suppose that only 2 haplotypes have been observed in a population:

• And that you observe the following reads:

• Can you guess the value of ${\tt N}$?

Step1 Alignments

Step3 Filtering Minor haplotype is excluded.

Building haplotypes

Yoshida et al (2015)

Use multiple samples

Nielsen et al (2012)

Haplotype imputation increase genotype

Nielsen et al (2012)

Adapted from Mark DePristo

VCF format

##fileformat=VCFv4.2 Mandatory header line

##source=myImputationProgramV3.1

##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

##FILTER=<ID=q10, Description="Quality below 10">

##FILTER=<ID=s50,Description="Less than 50% of samples have data">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

Mandatory header line

##FORM	AT-CTD-U	Number=2	Turne=Tr	togor D	occrit	ation="	Japlotuno Qualitu"						
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003		
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0 0:48:1:51,51	1 0:48:8:51,51	1/1:43:5		
20	17330		Т	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0 0:49:3:58,50	0 1:3:5:65,3	0/0:41:3		
20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1 2:21:6:23,27	2 1:2:0:18,2	2/2:35:4		
20	1230237		Т		47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:51,51	0/0:61:2		
20	1234567	microsat1	GTC	G,GTCT	50	PASS	NS=3; DP=9; AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3		
		/	7	\uparrow	K			γ]		
Reference base Quality s				uality	score Allele frequ	Allele frequency, read depth, etc.							
Alternative base							https://samtoc	https://samtools.github.io/hts-specs/VCFv4.2.pdf					

Variant filtering

Raw variant calls have a lot of false positives. How to filter? Which one do you look at first?

Manual filtering based on different parameters allele frequency, quality score, depth of coverge... Location (contig ends SNPs are usually inaccurate) Case by case

look at the strongest effect filter

Annotating variants

- Annotations using reference genomes
 Programs available: SNP-eff, annovar
- Calculate effects:
 - Coding (e.g. Syn, Non-Syn, Stop gained, Splice)
 - Non-coding (e.g. TFBS)

One of the mostly intensively research areas:

Linking variation to function

Unfortunately, only applicable to humans

For a new species, you have to start from scratch

Adapted from Mark DePristo

Structural variation (short reads)

More difficult structural variants

Traditional structural variations Can we see them in higher resolution?

Alkan et al. 2011

More difficult structural variants

Structural Variants (SVs): Genomic rearrangements that affect >50bp (or 100bp, or 1Kb) of sequence, including:

- deletions
- novel insertions
- inversions
- mobile-element transpositions
- duplications
- translocations

SV classes

Alkan et al. 2011

Again, our understanding is driven by technology

1990s CGH / FISH / SKY / COBRA

2000s Genomic microarrays BAC-aCGH / oligo-aCGH

Today High throughput DNA sequencing

Aaron Quinlan

Strategies for calling SVs from NGS data

Discordant read pairs

Reads pairs are also **Discordant** when order or orientation isn't as expected. Do they fall into particular region of the assembly?

Using discordant reads to detect SVs

Weaknesses

Difficult to interpret read-pairs in repetitive regions Difficult to fully characterize highly rearranged regions

High rate of false positives

Strengths:

Most classes of variation can, in principle, be detected

Adapted from Aaron Quinlan

Read-depth

Weaknesses:

- 1) Limited resolution (5-10kb) = imprecise boundaries
- 2) Cannot detect balanced events or reveal variant architecture.

Aaron Quinlan

Read-depth can be used to call aneuploidies

Whole-genome sequencing of two lung cancer cell lines. Each has a different pattern of duplications, deletions and translocations a) cell line H441 b) cell line A549

https://nanoporetech.com/
Split reads

Rausch et al. *Bioinformatics* 2012

Strategies for calling SVs from NGS data

De novo assembly for SVs

Alkan et al. 2011

Summary of strategies for calling SVs (short reads)

Aaron Quinlan

Bottom line for short reads calling SVs : try many methods and validate

Mills et al. Nature 2011

Kloosterman et al. 2015

Visual validation: a deletion

Aaron Quinlan

Visual validation: a duplication

Aaron Quinlar

ARTICLE

DOI: 10.1038/s41467-017-01343-4

4 OPEN

Mapping and phasing of structural variation in patient genomes using nanopore sequencing

Mircea Cretu Stancu¹, Markus J. van Roosmalen¹, Ivo Renkens¹, Marleen M. Nieboer¹, Sjors Middelkamp¹, Joep de Ligt ¹, Giulia Pregno², Daniela Giachino ², Giorgia Mandrile², Jose Espejo Valle-Inclan¹, Jerome Korzelius¹, Ewart de Bruijn¹, Edwin Cuppen³, Michael E. Talkowski^{4,5,6}, Tobias Marschall ^{7,8}, Jeroen de Ridder¹ & Wigard P. Kloosterman¹

- long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements.
- long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements.

Structural variants: A summary

Actually it's all the same methods

Reference assembly -> check depth -> detect duplication

New assembly -> check depth -> detect ploidy chromosomes / misassemblies

Current: SV should be called using long reads

Other experiments requiring mapping

Figure 1.2 A schematic summary of high-throughput sequencing applications. Details are described in Section 1.3.

Makinen et al

Other experiments requiring mapping

*-seq methodologies

Hawkins et al 2010

Other experiments requiring mapping

Similar methods Different analysis

Hawkins et al 2010

Validation and standardisation

Genome in a Bottle Consortium

The Genome in a Bottle Consortium is a public-private-academic consortium hosted by NIST to develop the technical infrastructure (reference standards, reference methods, and reference data) to enable translation of whole human genome sequencing to clinical practice.

NA12878 cell line, sequenced many platforms, read lengths and sample preps; A lot and lot of **Benchmarks**

https://sites.stanford.edu/abms/giab

Again, only in humans...

Ultimately, mapping is to quickly identify relationship between individuals / species once reference is known

Tradeoffs between \$\$\$, sample size, sensitivity, speed

workflow of clinical labs / ecological samples

Nature Reviews | Genetics

Didelot et al 2012

single cell genomics

Nature Reviews | Genetics

single cell genomics

Gawad et al 2016

Hoffmann et al. Climate Change Responses (2015) 2:1 DOI 10.1186/s40665-014-0009-x

REVIEW

Open Access

A framework for incorporating evolutionary genomics into biodiversity conservation and management

Ary Hoffmann^{1*}, Philippa Griffin¹, Shannon Dillon², Renee Catullo³, Rahul Rane¹, Margaret Byrne⁴, Rebecca Jordan¹, John Oakeshott⁵, Andrew Weeks¹, Leo Joseph⁶, Peter Lockhart⁷, Justin Borevitz³ and Carla Sgrò⁸

Opinion

Genomics and the challenging translation into conservation practice

Aaron B.A. Shafer¹, Jochen B.W. Wolf¹, Paulo C. Alves², Linnea Bergström¹, Michael W. Bruford³, Ioana Brännström¹, Guy Colling⁴, Love Dalén⁵, Luc De Meester⁶, Robert Ekblom¹, Katie D. Fawcett⁷, Simone Fior⁸, Mehrdad Hajibabaei⁹, Jason A. Hill¹⁰, A. Rus Hoezel¹¹, Jacob Höglund¹, Evelyn L. Jensen¹², Johannes Krause¹³, Torsten N. Kristensen¹⁴, Michael Krützen¹⁵, John K. McKay¹⁶, Anita J. Norman¹⁷, Rob Ogden¹⁸, E. Martin Österling¹⁹, N. Joop Ouborg²⁰, John Piccolo¹⁹, Danijela Popović²¹, Craig R. Primmer²², Floyd A. Reed²³, Marie Roumet⁸, Jordi Salmona²⁴, Tamara Schenekar²⁵, Michael K. Schwartz²⁶, Gernot Segelbacher²⁷, Helen Senn¹⁸, Jens Thaulow²⁸, Mia Valtonen²⁹, Andrew Veale¹², Philippine Vergeer³⁰, Nagarjun Vijay¹, Carles Vilà³¹, Matthias Weissensteiner¹, Lovisa Wennerström¹⁰, Christopher W. Wheat¹⁰, and Piotr Zieliński³² Table 1. Main areas traditionally addressed by conservation genetics [3], current status of genetic and genomic approaches, and the contribution that genomics can potentially make

Category	Status of conservation	Possible contribution of	Required for transition
	genetics	conservation genomics	from basic to applied ^a
Evolutionary genetics of natural populations			
Demographic inference – population history	Regularly used Moderate resolution	Improved accuracy and precision Finer-scale population structure Less limited by sample size	Clear understanding of limitations and biases User-friendly software
Adaptive genetic variation	Minimally used Based on population correlations [77] or candidate gene approaches	Improved detection of adaptive loci Management frameworks proposed [28] Methods still emerging Interpretations unclear	In-depth validation studies Genome annotation
Quantitative genetic variation	Limited resolution Often dependent on pedigrees or targeted gene approaches	Improved detection of quantitative trait loci Active application (e.g., genome-wide association studies)	Ecological studies Genome annotation
Taxonomic identification and general diagnostics	Regularly used Moderate resolution Restricted to single individuals	Assay species simultaneously [78] Improved hybridization detection Improved detection of pathogens	Defined pipelines (Box 3) Repeatability
Effects of small population size			
Inbreeding detection	Regularly used Limited resolution [34]	Improved estimates of inbreeding [34,62] Novel genomic metrics [79] Assess impact on specific genomic regions or adaptive loci	User-friendly bioinformatics Genome annotation Practitioner demand
Population viability	Minimally used [80]	Improved estimates of inbreeding metrics used in viability models [80]	Practitioner demand
Additional applications			
Genetic monitoring	Minimally used [11]	Improved sampling regimens [63] More powerful biodiversity surveys	Practitioner demand Compliance [11]
Population census	Regularly used	Higher-throughput screening	Practitioner demand
Maternity, paternity, and kinship analysis	Regularly used	Useful when microsatellite power is limited [81]	Practitioner demand

Trends in Ecology & Evolution, February 2015, Vol. 30, No. 2

Genomics research and development

SNP discovery

SNP validation and selection

Genome-wide genotyping

Marker assessment and selection

Population screening

Population genomic analysis

SNP panel selection

Applied traceability tools

Platform selection

Method validation

Standard operating procedures

The FishPopTracetarget species reproduced with permission from the Scandinavian Fishing Yearbook (c)

European hake (Merluccius merluccius L.)

Atlantic herring (Clupea harengus L.)

Atlantic cod (Gadus morhua L.)

Common sole (Solea solea L.)

TRENDS in Ecology & Evolution

Trends in Ecology & Evolution, February 2015, Vol. 30, No. 2

Reading materials

Introduction to Read-Based Alignment http://evomicsorg.wpengine.netdna-cdn.com/wp-content/uploads/2015/06/Intro-Read-Alignment.pdf

Ben Langmead http://www.langmead-lab.org/teaching-materials/

Additional references: https://www.notion.so/References-papers-links-in-start-learning-genomicsb7e57b28e9194bb29a02f483e0b894ad

Written assignment

Construct a BWT of the following sequence: ANNABANANA

Question:

 What is the output of last column?
Write out how you searched the string ANNA (hint: follow wiki*)

To be handed in **2020.04.15**

https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform