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R is a programming environment
• It’s free

• Hence R is supported by a large user network
• R is open source

• Can be run on Windows, Linux and Mac
• Provides an unparalleled platform for programming new statistical 

methods in an easy and straightforward manner. 
• Excellent graphics capabilities
• Lots and lots of analysis packages
• It is also old, hence you need to know new functions which do things 

much faster



Recommended textbook
http://r4ds.had.co.nz/

http://r4ds.had.co.nz/


Download R (ver4.0.1) and Rstudio
http://www.r-project.org
https://www.rstudio.com/

http://www.r-project.org/
https://www.rstudio.com/


Rstudio interface



Slide annotation

#code box
# Comment

function(x)



R as a calculator

Press enter to complete the expression

Incomplete expression will result in 
continuation prompt +

Completed expression



Assignment
<- is the assignment operation

Original value is replaced

R is case sensitive ; x does not equal to X

New value can be assigned as the result 
of calculation



Boolean assignment

student <- 30000
phd <- 56000

student > phd student < phd student != phd

[1] FALSE [1] TRUE [1] FALSE

student + student > phd

[1] TRUE

#Two heads are better than one



Vector is the simplest data structure in R 

x<- c(1,2,3,4,5,6,7,8,9,10)
c = combine or concatenate
In this case, we assign a vector of 10 
numbers into x

x * 2
x /10 + 1



Different types of vectors

x<- c(1,2,3,4,5,6,7,8,9,10)
strings <- c("AS","BRC")

typeof(x)
typeof(strings)

This matters when one data type is 
numbers, and you want to sort them 
categorically (factors) 



Data frames
• Think of these like Excel spreadsheets
• All the values of the same variable must go in the same column

• E.g., age, sex, RPKM, numbers
• Rows represent samples

• E.g., sample A collected in Taiwan, sample B collected in Japan

• Like matrices but different types of data are allowed

• Tibble from the dplyr package ; basically like data frame but much easier to 
manipulate



The data set consists of 50 samples from 
each of three species of Iris (Iris setosa, 
Iris virginica and Iris versicolor). Four 
features were measured from each sample: 
the length and the width of the sepals 
and petals, in centimetres. Based on the 
combination of these four features, Fisher 
developed a linear discriminant model to 
distinguish the species from each other.

This data set became a typical test case 
for many statistical classification 
techniques in machine learning such as 
support vector machines

https://en.wikipedia.org/wiki/Iris_flower_data_set

R has some pre-installed data frames

iris
head(iris)

https://en.wikipedia.org/wiki/Iris_flower_data_set


Selection in data frames

# Square brackets

# dollar ($) operation (for columns only) 

• dat[i , ]  would select the i-th row (which is a vector)
• dat[ , j]  would select the j-th column (which is a vector)
• dat[i, j]  would select the value from the i-th row and j-th column 

iris$Petal.Width

iris[,1]
iris[1,]
iris[1,1]



Function

function (arg1, arg2, arg3… , option1=,option2=...)

x<- c(1,2,3,4,5,6,7,8,9,10)
y<- c(3,6,9,10,13,30,20,100)

mean(x)
mean(y)
median(x)
max(x)

• Must have assigned names

• Applies using round brackets

• Takes argument and options



Useful base functions here

y<- abs(-20)
x<- Sum(y+5)
Z<- Log(x)
round(x,1)
summary(iris)
head(iris)
tail(iris)
ncol(iris)
nrow(iris)



R base function plot

x<- c(1,2,3,4,5,6,7,8,9,10)
y<- c(3,6,9,10,13,30,20,100,220,100)

plot(x,y)
plot(x,y,col="red")

# many functions have additional parameters
boxplot(x,y,col="red")
boxplot(x,y,col=c("hotpink", "yellow"))

boxplot(x,y,col=c("hotpink", "yellow"),main="Lec2")

# can use the ? sign to find out more about function
?boxplot



Running out of functions to use?

Use Packages

• R consists of a core and additional packages. 
• Collections of R functions, data, and compiled code
• Well-defined format that ensures easy installation, a basic standard of 

documentation, and enhances portability and reliability



Install R packages

http://r4ds.had.co.nz/introduction.html#rstudio

# install
install.packages(“tidyverse”)

#after it’s installed, you can initiate by using library
library(tidyverse)

• An R package is a collection of functions, data, and 
documentation that extends the capabilities of base R.

• Using packages is key to the successful use of R. 

• Understanding tidyverse is highly recommended. 

http://r4ds.had.co.nz/introduction.html


Tidyverse package (much better/easier functions)



Communicate: R markdown in Rstudio

https://rmarkdown.rstudio.com/r_notebooks.html

https://rmarkdown.rstudio.com/r_notebooks.html


R for Data Science

Tidyverse package (much better/easier functions)



R for Data Science

dplyr package



R for Data Science

filter

filter(flights, month == 1, day == 1)

jan1 <- filter(flights, month == 1, day == 1)

filter(flights, month = 1)

filter(flights, month == 11 | month == 12)

nov_dec <- filter(flights, month %in% c(11, 12))



R for Data Science

arrange

arrange(flights, desc(dep_delay))

arrange(flights, dep_delay)



R for Data Science

select

select(flights, year, month, day)

# Select all columns between year and day (inclusive)
select(flights, year:day)

select(flights, -(year:day))



R for Data Science

mutate

select(flights, year, month, day)

# Select all columns between year and day (inclusive)
select(flights, year:day)

select(flights, -(year:day))



R for Data Science

mutate()

flights_sml <- select(flights, 
year:day, 
ends_with("delay"), 
distance, 
air_time

)

mutate(flights_sml,
gain = dep_delay - arr_delay,
speed = distance / air_time * 60

)



R for Data Science

transmute()

transmute(flights, 
gain = dep_delay - arr_delay, 
hours = air_time / 60, 
gain_per_hour = gain / hours )



R for Data Science

summarise() and group_by

by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))

by_dest <- group_by(flights, dest) 
delay <- summarise(by_dest, 

count = n(), 
dist = mean(distance, na.rm = TRUE), 
delay = mean(arr_delay, na.rm = TRUE) ) 

delay <- filter(delay, count > 20, dest != "HNL")



R for Data Science

delays <- flights %>% 
group_by(dest) %>% 
summarise( count = n(), 

dist = mean(distance, na.rm = TRUE), 
delay = mean(arr_delay, na.rm = TRUE) ) %>% 

filter(count > 20, dest != "HNL")

Combine functions into a pipe



R for Data Science

Data wrangling is very important: without it you can’t work 
with your own data!

Data wrangling 



R for Data Science

Tibble • work with “tibbles” instead of R’s traditional data.frame. Tibbles are data frames, 
but they tweak some older behaviours to make life a little easier. 

• R is an old language, and some things that were useful 10 or 20 years ago now 
get in your way. It’s difficult to change base R without breaking existing code, so 
most innovation occurs in packages. 

as_tibble(iris)



R for Data Science

Tibble vs. data.frame

• Tibbles have a refined print method that shows only the first 10 rows, and all the 
columns that fit on screen. This makes it much easier to work with large data. In 
addition to its name, each column reports its type

• So far all the tools you’ve learned have worked with complete data frames. If you 
want to pull out a single variable, you need some new tools, $ and [[ .  [[ can 
extract by name or position; $ only extracts by name but is a little less typing.



R for Data Science

Tidy data (perhaps the most important part of tutorial)

tidyr package



R for Data Science

Dataset example; which is preferred?

table1
table2
table3

#spread across two tables
table4a
table4b



R for Data Science

Definition of tidy dataset
1.Each variable must have its own column.
2.Each observation must have its own row.
3.Each value must have its own cell.

table1 is tidy. It’s the only representation where each 
column is a variable.



R for Data Science

Advantage of tidy dataset

1.There’s a general advantage to picking one consistent way of storing data. If you have a consistent 
data structure, it’s easier to learn the tools that work with it because they have an underlying 
uniformity.

2.There’s a specific advantage to placing variables in columns because it allows R’s vectorised
nature to shine. As you learned in mutate and summary functions, most built-in R functions work with 
vectors of values. That makes transforming tidy data feel particularly natural.

https://r4ds.had.co.nz/transform.html
https://r4ds.had.co.nz/tidy-data.html


R for Data Science

Most data that you will encounter will be untidy. 

There are two main reasons:
• Most people aren’t familiar with the principles of tidy data, and it’s hard to derive them yourself 

unless you spend a lot of time working with data.
• Data is often organised to facilitate some use other than analysis. For example, data is often 

organised to make entry as easy as possible.

This means for most real analyses, you’ll need to do some tidying. 

• first step is always to figure out what the variables and observations are. Sometimes this is easy; 
other times you’ll need to consult with the people who originally generated the data. 

• second step is to resolve one of two common problems:
• One variable might be spread across multiple columns.
• One observation might be scattered across multiple rows.



R for Data Science

pivot_longer() and pivot_wider()

table4a



table4a %>% 
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")

R for Data Science

pivot_longer() and pivot_wider()

Pivoting table4 into a longer, tidy form. 



R for Data Science

pivot_longer() and pivot_wider()

table2



R for Data Science

pivot_longer() and pivot_wider()

table2 %>% 
pivot_wider(names_from = type, values_from = count)



R for Data Science

More functions in tidyr

table3 %>% 
separate(rate, into = c("cases", "population"), sep = "/")

table5 %>% 
unite(new, century, year, sep = "")



R for Data Science

Relational data

• It’s rare that a data analysis involves only a single table of data. Typically you have many tables of data, 
and you must combine them to answer the questions that you’re interested in. Collectively, multiple 
tables of data are called relational data because it is the relations, not just the individual datasets, that 
are important.

To work with relational data you need verbs that work with pairs of tables. There are three families of verbs 
designed to work with relational data:

•Mutating joins, which add new variables to one data frame from matching observations in another.

•Filtering joins, which filter observations from one data frame based on whether or not they match an 
observation in the other table.

•Set operations, which treat observations as if they were set elements.



R for Data Science

Mutating joins

https://rstudio.com/wp-content/uploads/2015/02/data-
wrangling-cheatsheet.pdf

https://rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf


R for Data Science

Filtering joins; semi_join and anti_join
Filtering joins keep cases from the left data table (i.e. the 
X-data) and use the right data (i.e. the Y-data) as filter.

https://statisticsglobe.com/r-dplyr-join-inner-left-right-full-
semi-anti

semi_join(data1, data2, by = "ID")
anti_join(data1, data2, by = "ID")

https://statisticsglobe.com/r-dplyr-join-inner-left-right-full-semi-anti


Visualisation



Examples I - amplicon

OTU Site1 Site2 Site3
OTU2 4 10 3
OTU4 8 15 1

Site pH metadata2 metadata3
Site1 3 1 4
Site2 5 2 5
Site3 7 2 6

OTU Species Trait2 Trait3
OTU2 Bacteria Pathogen 44
OTU4 Fungus free-living 32

Q: Is the relative abundance of OTUn associated with
abiotic factors?

Q: Is the relative abundance 
of OTUn associated with
particular trait?



Examples II – genome features

Chromosome Region start Region end Gene density
ChrI 1 1000 30
ChrI 1001 2000 40
ChrI 2001 3000 3

Chromosome Region start Region end TE density
ChrI 1 1000 3
ChrI 1001 2000 1
ChrI 2001 3000 60

Chromosome Region start Region end GC content
ChrI 1 1000 30
ChrI 1001 2000 35
ChrI 2001 3000 40

Chromosome Midpoint Gene density TE density GC content
ChrI 500 30 3 30
ChrI 1500 40 1 35
ChrI 2500 3 60 40

#Ideal table?

Program1 output

Program2 output

Program3 output





R for Data Science

ggplot
ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point()

aes : Aesthetic mappings describe 
how variables in the data are 
mapped to visual properties 
(aesthetics) of geoms

ggplot(tb) + 
geom_point(aes(x = Sepal.Length, y = Sepal.Width))



R for Data Science

ggplot
ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point( aes(color=Species))

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point( aes(color=Species, shape=Species))



R for Data Science

ggplot
ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point( aes(color=Species))

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + 
geom_point( aes(color=Species, shape=Species))



R for Data Science

ggplot
p <- ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width, color=Species)) + 
geom_point( aes(shape=Species))

p + geom_smooth(method="lm")



R for Data Science

facet
# rows
p + geom_smooth(method="loess") + 
facet_grid(. ~ Species)

# along columns
p + geom_smooth(method="loess") + 
facet_grid(Species ~ .)



R for Data Science

More ggplot functions and extensions

https://exts.ggplot2.tidyverse.org/gallery/ http://r-statistics.co/Top50-Ggplot2-Visualizations-
MasterList-R-Code.html

https://exts.ggplot2.tidyverse.org/gallery/
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html


Exercise – iris

library(tidyverse)
tb <- as_tibble(iris)

# Try to plot boxplot of Sepal.Width categorized by species
# hint: use geom_boxplot and ?geom_boxplot to find usage

# add colour to each boxplot
# hint: use fill

# plot all four lengths in multiple boxes categorized by species
# hint: think about tidy data (long and wide?)
# final plot

# Can you make it better?
# title? 
# a different theme? Final plot



Exercise – starwar J
library("tidyverse")
starwars
glimpse(starwars)

# some data exploration 
# plot height vs mass using ggplot and geom_point
# who’s the heaviest? ; add color by sex to categorise this character quickly
# alternatively, facet_grid?

# average height by species?
# hint: group_by and summarise
# hint2: use mean(height, na.rm = TRUE) to deal with na figures

# which species is the shortest? 
# hint: arrange

# visualize numbers of characters based on sex
# this is categorical data ; use geom_bar

# for each bar, can you further split them into hair_color?

# what about proportions? (final plot)

# why NA in hair_color in the hermaphroditic category? 
# Note: this is purely for star wars fans

Final plot



Good References

OpenIntro Statistics
*** great book about statistics
• https://www.openintro.org/

R statistics
• http://r-statistics.co/

# If you want to practice more:
• https://www.datacamp.com/onboarding/learn?technology=r
• https://www.coursera.org/specializations/data-science-foundations-r

http://r-statistics.co/
http://r-statistics.co/
https://www.datacamp.com/onboarding/learn%3Ftechnology=r
https://www.coursera.org/specializations/data-science-foundations-r

