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R Is a programming environment

It's free
 Hence R is supported by a large user network
 Ris open source

« Can be run on Windows, Linux and Mac

* Provides an unparalleled platform for programming new statistical
methods in an easy and straightforward manner.

 Excellent graphics capabilities
* Lots and lots of analysis packages

 ltis also old, hence you need to know new functions which do things
much faster



Recommended textbook

http://r4ds.had.co.nz/

R for Data
Science

VISUALIZE, MODEL, TRANSFORM, TIDY, AND IMPORT DATA

Hadley Wickham &
Garrett Grolemund

B OREILLY ]

R for Data Science

Garrett Grolemund
Hadley Wickham

Welcome

This is the website for “R for Data Science”. This book will teach you how to do data science with R:
You'll learn how to get your data into R, get it into the most useful structure, transform it, visualise it and
model it. In this book, you will find a practicum of skills for data science. Just as a chemist learns how to
clean test tubes and stock a lab, you'll learn how to clean data and draw plots—and many other things
besides. These are the skills that allow data science to happen, and here you will find the best practices
for doing each of these things with R. You'll learn how to use the grammar of graphics, literate
programming, and reproducible research to save time. You’ll also learn how to manage cognitive

resources to facilitate discoveries when wrangling, visualising, and exploring data.


http://r4ds.had.co.nz/

Download R (ver4.0.1) and Rstudio

http://www.r-project.org
https://www.rstudio.com/

eStudio‘

RStudio

RStudio makes R easier to use. It
includes a code editor,
debugging & visualization tools.

& Download € Learn More

‘ ' ZIP explorer

Shiny

Shiny helps you make interactive web
applications for visualizing data. Bring R
data analysis to life.

© Learn More

£

rmarkdown

ggplot2

R Packages

Our developers create popular packages
to expand the features of R. Includes
gegplot2, dplyr, R Markdown & more.

© Learn More


http://www.r-project.org/
https://www.rstudio.com/
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Slide annotation

#code box
# Comment

function(x)



R as a calculator

L 2.3 — Press enter to complete the expression

_flg,g - Completed expression

[1] 6

> 1

[1] 1

>1 4+ 3

[1] 4

> 3 4 : : :
Incomplete expression will result in

;1111 -

+ 1000 continuation prompt +



Assignment

> X <= 5 <- Is the assignment operation

> X
[1] 5
>y <- 10

>y

[1] 10

> X4Y

[1] 15 _ -

> X <- 10 R is case sensitive ; X does not equal to X

> X
[1] 19

> X
1] 5 .. .
[ 1 - 100 Original value is replaced

> X

[1] 100

>Z <= X4+Yy+Xq New value can be assigned as the result
> Z .

1] 120 of calculation




Boolean assignment

student <- 30000

phd <- 56000
student > phd student < phd student != phd
[1] FALSE [1] TRUE [1] FALSE

student + student > phd <«——— #Two heads are better than one

[1] TRUE



Vector Is the simplest data structure in R

¢ = combine or concatenate
x<-c(1,2,3,4,5,6,7,8,9,10) In this case, we assign a vector of 10
numbers into x

X*2
x /10 + 1



Different types of vectors

x<-c¢(1,2,3,4,5,6,7,8,9,10)
strings <- c("AS","BRC")

This matters when one data type is
numbers, and you want to sort them

typeof(x) categorically (factors)
typeof(strings)

> typeof(x)

[1] "double”

> typeof(char)
[1] "character"

> typeof(strings)
[lg "character"



Data frames

* Think of these like Excel spreadsheets

« All the values of the same variable must go in the same column
 E.g., age, sex, RPKM, numbers

 Rows represent samples
 E.g., sample A collected in Taiwan, sample B collected in Japan

« Like matrices but different types of data are allowed

« Tibble from the dplyr package ; basically like data frame but much easier to
manipulate



R has some pre-installed data frames

The data set consists of 50 samples from
each of three species of Iris (Iris setosa,
Iris virginica and Iris versicolor). Four

features were measured from each sample:

the length and the width of the sepals
and petals, in centimetres. Based on the
combination of these four features, Fisher
developed a linear discriminant model to
distinguish the species from each other.

This data set became a typical test case
for many statistical classification
techniques in machine learning such as
support vector machines

Iris
head(iris)

https://en.wikipedia.org/wiki/lris flower data

set

Iris setosa

Iris virginica

THE USE OF MULTIPLE MEASUREMENTS IN
TAXONOMIC PROBLEMS

By R. A. FISHER, Sc.D., F.R.S.

I. DISCRIMINANT FUNCTIONS

WHEN two or more populations have been measured in several characters, z,, ..., %,
gpecial interest attaches to certain linear functions of the measurements by which the
populations are best discriminated. At the author’s suggestion use has already been made
of this fact in craniometry (@) by Mr E. S. Martin, who has applied the principle to the
sex differences in measurements of the mandible, and (b) by Miss Mildred Barnard, who
showed how to obtain from a series of dated series the particular compound of cranial
measurements showing most distinctly a progressive or secular trend. In the present paper
the application of the same principle will be illustrated on a taxonomic problem; some
questions connected with the precision of the processes employed will also be discussed.

TI. ARITHMETICAL PROCEDURE

Table I shows measurements of the flowers of fifty plants each of the two species Iris
selosa and I. versicolor, found growing together in the same colony and measured by
Dr E. Anderson, to whom I am indebted for the use of the data. Four flower measure-
ments are given. We shall first consider the question: What linear function of the four
measurements X =\ 2y + Mg Ty + Ay 23 + A 2,
will maximize the ratio of the difference between the specific means to the standard
deviations within species? The observed means and their differences are shown in Table II.
We may represent the differences by d,,, where p=1, 2, 3 or 4 for the four measurements,

The sums of squares and products of deviations from the specific means are shown in
Table TTI. Since fifty plants of each species were used these sums contain 98 degrees
of freedom. We may represent these sums of squares or products by S,,, where p and ¢
take independently the values 1, 2, 3 and 4.

Then for any linear function, X, of the measurements, as defined above, the difference
between the means of X in the two species is

D’Axdl'*'hidf*"\ad:""kndu
while the variance of X within species is proportional to

4 4
8= I AAS,,.
1

p=1gq=

The particular linear function which best discriminates the two species will be one for


https://en.wikipedia.org/wiki/Iris_flower_data_set

Selection In data frames

# Square brackets

dat[i , ] would select the i-th row (which is a vector)
dat[ , j] would select the j-th column (which is a vector)
dat[i, j] would select the value from the /-th row and j-th column

iris[,1]
iris[1,]
iris[1,1]

# dollar ($) operation (for columns only)

iris$Petal . Width



Function

function (arg1, arg2, arg3... , option1=,option2=...)

x<- ¢(1,2,3,4,5,6,7,8,9,10)
y<-¢(3,6,9,10,13,30,20,100)  Must have assigned names

mean(x) > x<- ¢(1,2,2,3,5,6,7,10) . . .
mean(y) > y<- ¢(3,6,9,10,13,30,20,100) Applies using round brackets

median(x) 'Elg“-‘zngx)
max(x) > meanCy) « Takes argument and options
[1] 23.875
> median(x)
[1] 4
> median(y)
[1] 11.5
> max(x)
[1] 10
> min(y)
[1] 3



Useful base functions here

y<- abs(-20)
X<- Sum(y+95)
Z<- Log(x)
round(x,1)
summary(iris)
head(iris)
tail(iris)
ncol(iris)
nrow(iris)



R base function plot

x<-¢(1,2,3,4,5,6,7,8,9,10)
y<- ¢(3,6,9,10,13,30,20,100,220,100)

plot(x,y)
plot(x,y,col="red")

# many functions have additional parameters
boxplot(x,y,col="red")
boxplot(x,y,col=c("hotpink", "yellow"))

boxplot(x,y,col=c("hotpink", "yellow"),main="Lec2")

# can use the ? sign to find out more about function
?boxplot

80 100

40 60

20

80 100

40 60

20

60
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Running out of functions to use?

Use Packages

* R consists of a core and additional packages.

* Collections of R functions, data, and compiled code

« Well-defined format that ensures easy installation, a basic standard of
documentation, and enhances portability and reliability



Install R packages

* An R package is a collection of functions, data, and
documentation that extends the capabilities of base R.
» Using packages is key to the successful use of R.

« Understanding tidyverse is highly recommended.

# install
install.packages(“tidyverse”)

#after it's installed, you can initiate by using library
library(tidyverse)

http://r4dds.had.co.nz/introduction.html#rstudio



http://r4ds.had.co.nz/introduction.html

Tidyverse package (much better/easier functions)

T -i d y \V; e r s e Packages  Articles Learn Help  Contribute

R packages for data science

The tidyverse is an opinionated collection of R packages
designed for data science. All packages share an

underlying design philosophy, grammar, and data
structures.

Install the complete tidyverse with:

install.packages("tidyverse")



Communicate: R markdown in Rstudio

@1 chunks.Rmd = 3
A Q[ | @ KnitHTML =% %% @ Chunks~

©
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https://rmarkdown.rstudio.com/r notebooks.html
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R Code Chunks

With R Markdown, you can insert R code
chunks including plots:

" {r gplot, fig.width=4, fig.height=3,
message=FALSE}

# quick summary and plot
library(ggplot2)

summary(cars)

gplot(speed, dist, data=cars) +

geom_smooth()

eNO RStudio: Preview HTML

Preview: ~/chunks.htm! | 5 [] Save As EﬁPublish

R Code Chunks

With R Markdown, you can insert R code chunks including plots:

# quick summary and plot

library(ggplot2)

summary(cars)

i speed dist
## Min. : 4.0 Min. 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:189.0 3rd Qu.: 56
## Max. :25.0 Max. 1120

| gplot(speed, dist, data = cars) + geom_smooth()

dist



https://rmarkdown.rstudio.com/r_notebooks.html

Tidyverse package (much better/easier functions)

r N
/ Visualise
Import — Tidy — Transform ) —— Communicate
L__, Model
Understand
. /
Program

R for Data Science



dplyr package

e Pick observations by their values ( filter() ).

e Reorder the rows ( arrange() ).

e Pick variables by their names ( select() ).

e Create new variables with functions of existing variables ( mutate() ).

e Collapse many values down to a single summary ( summarise() ).

R for Data Science



filter

filter() allows you to subset observations based on their values. The first argument is the name

of the data frame. The second and subsequent arguments are the expressions that filter the data
frame. For example, we can select all flights on January 1st with:

filter(flights, month == 1, day == 1)

jan1 <- filter(flights, month == 1, day == 1)
filter(flights, month = 1)

filter(flights, month == 11 | month == 12)

nov_dec <- filter(flights, month %in% c(11, 12))

R for Data Science



arrange

arrange() works similarly to filter() except that instead of selecting rows, it changes their
order. It takes a data frame and a set of column names (or more complicated expressions) to order
by. If you provide more than one column name, each additional column will be used to break ties in

the values of preceding columns:

arrange(flights, desc(dep_delay))

arrange(flights, dep_delay)

R for Data Science



select

Besides selecting sets of existing columns, it’'s often useful to add new columns that are functions

of existing columns. That’s the job of mutate() .

select(flights, year, month, day)

# Select all columns between year and day (inclusive) —>
select(flights, year:day)

select(flights, -(year:day))

R for Data Science



mutate

select(flights, year, month, day)

# Select all columns between year and day (inclusive)
select(flights, year:day)

select(flights, -(year:day))

R for Data Science



mutate()

Besides selecting sets of existing columns, it’s often useful to add new columns that are functions

of existing columns. That’s the job of mutate() .

flights _sml <- select(flights,

year:day,

ends_with("delay"),

distance,

air_time —>
)

mutate(flights _sml,
gain = dep_delay - arr_delay,
speed = distance / air_time * 60

)

R for Data Science



transmute()

If you only want to keep the new variables, use transmute() :

transmute(flights,
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours )

R for Data Science



summarise() and group_ by

by day <- group_by(flights, year, month, day)
summarise(by day, delay = mean(dep_delay, na.rm = TRUE))

by dest <- group_by(flights, dest)
delay <- summarise(by_dest,
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE) )
delay <- filter(delay, count > 20, dest != "HNL")

R for Data Science



Combine functions into a pipe

delays <- flights %>%
group_by(dest) %>%
summarise( count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE) ) %>%
filter(count > 20, dest != "HNL")

R for Data Science



Data wrangling

Data wrangling is very important: without it you can’t work
with your own data!

-
/, Visualise
Import — Tidy —* Transform ) —— Communicate
W |
e k\ Model
Understand

-

Program

R for Data Science



T| b b I e « work with “tibbles” instead of R’s traditional data.frame. Tibbles are data frames,
but they tweak some older behaviours to make life a little easier.

« Ris an old language, and some things that were useful 10 or 20 years ago now

get in your way. It's difficult to change base R without breaking existing code, so
most innovation occurs in packages.

as_tibble(iris)

#> # A tibble: 150 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species

#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 .4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> # .. with 144 more rows

R for Data Science



Tibble vs. data.frame

» Tibbles have a refined print method that shows only the first 10 rows, and all the
columns that fit on screen. This makes it much easier to work with large data. In
addition to its name, each column reports its type

« So far all the tools you've learned have worked with complete data frames. If you

want to pull out a single variable, you need some new tools, $ and [[. [[ can
extract by name or position; $ only extracts by name but is a little less typing.

R for Data Science



Tidy data (perhaps the most important part of tutorial)

tidyr package
“Happy families are all alike; every unhappy family is unhappy in its own way.” — Leo Tolstoy
“Tidy datasets are all alike, but every messy dataset is messy in its own way.” — Hadley Wickham

R for Data Science



Dataset example; which is preferred?

#> # A tibble: 6 x 4

v

country
<chr>
Afghanistan
Afghanistan
Brazil
Brazil

China

S A A A A A

China

table1
table2
table3

#spread across two tables
tabled4a
table4b

R for Data Science

year

<int>

1999
2000
1999
2000
1999
2000

cases population
<int> <int>
745 19987071
2666 20595360
37737 172006362
80488 174504898
212258 1272915272
213766 1280428583

A A A

o )

#

H+ O U AN W N R

A tibble: 12 x 4

country year
<chr> <int>
Afghanistan 1999
Afghanistan 1999
Afghanistan 2000
Afghanistan 2000
Brazil 1999
Brazil 1999

. With 6 more rows

type count
<chr> <int>
cases 745
population 19987071
cases 2666
population 20595360
cases 37737

population 172006362



Definition of tidy dataset

variables

R for Data Science

000000
000000

1.Each variable must have its own column.
2.Each observation must have its own row.
3.Each value must have its own cell.

000000

observations values

000000

table1 is tidy. It's the only representation where each

column is a variable.



Advantage of tidy dataset

1.There’s a general advantage to picking one consistent way of storing data. If you have a consistent
data structure, it's easier to learn the tools that work with it because they have an underlying

uniformity.

2.There’s a specific advantage to placing variables in columns because it allows R’s vectorised
nature to shine. As you learned in mutate and summary functions, most built-in R functions work with

vectors of values. That makes transforming tidy data feel particularly natural.

R for Data Science


https://r4ds.had.co.nz/transform.html
https://r4ds.had.co.nz/tidy-data.html

Most data that you will encounter will be untidy.

There are two main reasons:
» Most people aren’t familiar with the principles of tidy data, and it's hard to derive them yourself

unless you spend a /ot of time working with data.
« Data is often organised to facilitate some use other than analysis. For example, data is often
organised to make entry as easy as possible.

This means for most real analyses, you’ll need to do some tidying.

 first step is always to figure out what the variables and observations are. Sometimes this is easy;
other times you’ll need to consult with the people who originally generated the data.
« second step is to resolve one of two common problems:
* One variable might be spread across multiple columns.
* One observation might be scattered across multiple rows.

R for Data Science



pivot longer() and pivot_wider()

A common problem is a dataset where some of the column names are not names of variables, but values
of a variable. Take tableda : the column names 1999 and 2000 represent values of the year
variable, the values in the 1999 and 2000 columns represent values of the cases variable, and each

row represents two observations, not one.

tableda

#> # A tibble: 3 x 3

#>  country "1999° 2000
#> % <chr> <int> <int>

#> 1 Afghanistan 745 2666
#> 2 Brazil 37737 80488
#> 3 China 212258 213766

table4a

R for Data Science



pivot longer() and pivot_wider()

To tidy a dataset like this, we need to pivot the offending columns into a new pair of variables. To
describe that operation we need three parameters:

e The set of columns whose names are values, not variables. In this example, those are the columns
1999 and 2000 .

e The name of the variable to move the column names to. Here it is year .

e The name of the variable to move the column values to. Here it's cases . Pivoting table4 into a longer, tidy form.
country | year | cases | country | 1999 | 2000
Afghanistan 1999 745 2666
Afghanistan 2000 2666m:_ 80488
Brazil 1999 37737% 212258 213766
Brazil 2000 80488 /
China 1999 212258

China 2000 213766

table4

table4a %>%
pivot_longer(c('1999°, '2000°), names_to = "year", values_to = "cases")

R for Data Science



pivot longer() and pivot_wider()

pivot_wider() is the opposite of pivot_longer() . You use it when an observation is scattered
across multiple rows. For example, take table2 : an observation is a country in a year, but each

observation is spread across two rows.

#> # A tibble: 12 x 4

#> country year type count
#> <chr> <int> <chr> <int>
#> 1 Afghanistan 1999 cases 745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases 2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil 1999 cases 37737
#> 6 Brazil 1999 population 172006362
#> # .. with 6 more rows

table2

R for Data Science



pivot longer() and pivot_wider()

To tidy this up, we first analyse the representation in similar way to pivot_longer() . This time,

however, we only need two parameters:

table2 %>%

e The column to take variable names from. Here, it’'s type . i )
pivot_wider(names_from = type, values_from = count)

e The column to take values from. Here it’'s count .

population
19987071

| country year _key | value | ColEVAlves (Cases

Afghanistan 1999 cases 745
Afghanistan 1999 population 19987071 20595360
Afghanistan 2000 cases 2666 172006362
Afghanistan 2000 population 20595360 174504898
Brazil 1999 cases 37737 1272915272
Brazil 1999 population 172006362 1280428583
Brazil 2000 cases 80488
Brazil 2000 population 174504898
China 1999 cases 212258
China 1999 population 1272915272
China 2000 cases 213766
China 2000 population 1280428583
table2

R for Data Science



More functions in tidyr

table3 %>% tabled %>%
separate(rate, into = c("cases", "population”), sep ="/") unite(new, century, year, sep ="")

country [yearrate countey | yoar cases populaton l“country lyear| rate | oy oy e

Afghanistan 1999 745/19987071 Afghanistan 1999 745 19987071  Afghanistan 1999 745 /19987071 Afghanistan 745 /19987071

Afghanistan 2000 2666 / 20595360 Afghanistan 2000 2666 20595360  Afghanistan 2000 2666 / 20595360 Afghanistan 20 0 2666 / 20595360

Brazil 1999 37737 /172006362 Brazil 1999 37737 172006362  Brazil 1999 37737 /172006362 Brazil 19 99 37737 / 172006362

Brazil 2000 80488 /174504898 Brazil 2000 80488 174504898  Brazil 2000 80488 /174504898 Brazil 20 0 80488 / 174504898

China 1999 212258 / 1272915272 China 1999 212258 1272915272  China 1999 212258 / 1272915272 China 19 99 212258 /1272915272

China 2000 213766 / 1280428583 China 2000 213766 1280428583 China 2000 213766 /1280428583 China 20 0 213766 / 1280428583
table3 table6

R for Data Science



Relational data

» It's rare that a data analysis involves only a single table of data. Typically you have many tables of data,
and you must combine them to answer the questions that you’re interested in. Collectively, multiple
tables of data are called relational data because it is the relations, not just the individual datasets, that
are important.

To work with relational data you need verbs that work with pairs of tables. There are three families of verbs
designed to work with relational data:

*Mutating joins, which add new variables to one data frame from matching observations in another.

*Filtering joins, which filter observations from one data frame based on whether or not they match an
observation in the other table.

*Set operations, which treat observations as if they were set elements.

R for Data Science



Mutating joins

a
| x1 [ x2 |
A 1
8 2 = —
cC 3
Mutating Joins
EAIE dplyr:left_join(a, b, by = "x1")

—— ? Join matching rows from b to a.

dplyrright_join(a, b, by ="x1")
Join matching rows from a to b.

dplyr:inner_join(a, b, by = "x1")
Join data. Retain only rows in both sets.

dplyr:full_join(a, b, by = "x1")
Join data. Retain all values, all rows.

https://rstudio.com/wp-content/uploads/2015/02/data-
R for Data Science wrangling-cheatsheet.pdf



https://rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

Filtering joins; semi_join and anti_join

Filtering joins keep cases from the left data table (i.e. the
X-data) and use the right data (i.e. the Y-data) as filter.

semi_join anti_join
ID X1 ID X2 ID X1 ID X2
1 al 2 b1l 1 al 2 b1
2 a2 3 b2 2 a2 3 b2

ID X1 ID X1

2 a2 1 al

semi_join(data1, data2, by = "ID")
anti_join(data1, data2, by = "ID")

https://statisticsglobe.com/r-dplyr-join-inner-left-right-full-
R for Data Science semi-anti



https://statisticsglobe.com/r-dplyr-join-inner-left-right-full-semi-anti

Visualisation

“The simple graph has brought more information to the data analyst’s mind than any other device.”

— John Tukey



Examples | - amplicon

Q: Is the relative abundance of OTUn associated with
abiotic factors?

OTU Site1 Site2 Site3 Site pH metadata2 metadata3
OTU2 4 10 3 Site1 3 1 4
OoTU4 8 15 1 Site2 5 2 5

Site3 7 2 6

Q: Is the relative abundance
of OTUn associated with
particular trait?

OTU Species Trait2 Trait3
OTuU2 Bacteria  Pathogen 44
OTU4 Fungus free-living 32



Examples Il — genome features

Program1 output

Chromosome Region start Regionend Gene density

Chrl 1 1000 30
Chrl 1001 2000 40
Chrl 2001 3000 3

#ldeal table?

Program2 OUtpUt Chromosome Midpoint  Gene density TE density GC content

Chrl 500 30 3 30
Chromosome Region start Region end TE density Chrl 1500 40 1 35
Chrl 1 1000 3 Chrl 2500 3 60 40
Chrl 1001 2000 1
Chrl 2001 3000 60

Program3 output

Chromosome Region start Region end GC content
Chrl 1 1000 30
Chrl 1001 2000 35
Chrl 2001 3000 40



# A tibble: 150 x 5
Sepal.Length Sepal .Width Petal.Length Petal.Width
<dbl>

-

<dbl>
1

192}

9
.7
6

.6

.4
)

with 140 more rows

A pu b phph D
N

w

wNWwWwwwwww
P O PP OOOEFEN

.5

<dbl>

[N

PR R RRRRRR
VNP pA~NDPDUTWAD

<dbl>

S
N

(SRS G I S IS BN S G RN S N
P NN WA NNNN

Species
<fct>
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
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ggplot

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) + ggplot(tb) +

geom_point() geom_point(aes(x = Sepal.Length, y = Sepal.Width))
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ggplot

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point( aes(color=Species))

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point( aes(color=Species, shape=Species))
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ggplot

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point( aes(color=Species))

ggplot(tb, aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point( aes(color=Species, shape=Species))
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ggplot

p <- ggplot(ib, aes(x = Sepal.Length, y = Sepal.Width, color=Species)) +

geom_point( aes(shape=Species))

p + geom_smooth(method="Im")
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facet

# rows
p + geom_smooth(method="loess") +
facet_grid(. ~ Species)

setosa versicolor virginica
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# along columns

p + geom_smooth(method="loess") +

facet_grid(Species ~ .)
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More ggplot functions and extensions

https://exts.ggplot?2.tidyverse.org/gallery/ http://r-statistics.co/Top50-Ggplot2-Visualizations-
MasterList-R-Code.html

Top 50 ggplot2 Visualizations - The Master
List (With Full R Code)

What type of visualization to use for what sort of problem? This tutorial helps you choose the

right type of chart for your specific objectives and how to implement it in R using ggplot2.

R for Data Science


https://exts.ggplot2.tidyverse.org/gallery/
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html

Exercise — Iris

library(tidyverse)
tb <- as_tibble(iris)

# Try to plot boxplot of Sepal.Width categorized by species
# hint: use geom_boxplot and ?geom_boxplot to find usage

# add colour to each boxplot
# hint: use fill

# plot all four lengths in multiple boxes categorized by species
# hint: think about tidy data (long and wide?)
# final plot

# Can you make it better?
# title?
# a different theme?
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Exercise — starwar ©

library("tidyverse")
starwars
glimpse(starwars)

# some data exploration

# plot height vs mass using ggplot and geom_point

# who's the heaviest? ; add color by sex to categorise this character quickly
# alternatively, facet_grid?

# average height by species?
# hint: group_by and summarise
# hint2: use mean(height, na.rm = TRUE) to deal with na figures

# which species is the shortest?
# hint: arrange

# visualize numbers of characters based on sex
# this is categorical data ; use geom_bar

# for each bar, can you further split them into hair_color?
# what about proportions? (final plot)

# why NA in hair_color in the hermaphroditic category?
# Note: this is purely for star wars fans
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Good References

Openlintro Statistics
*** great book about statistics
* https://www.openintro.org/

R statistics
« http://r-statistics.co/

# If you want to practice more:
* https://www.datacamp.com/onboarding/learn?technology=r
« https://www.coursera.org/specializations/data-science-foundations-r
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