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Lecture outline

What I will cover today
• mRNAseq (for bulk RNAseq)
• mapping
• assembly / reconstruction
• annotation
• experimental design
• differential expression
• single cell genomics

What I won’t cover due to time constraints but equally important
• pseudoalignment (kallisto, salmon etc)
• noncoding RNAs
• long read mapping



Types of RNA

http://finchtalk.blogspot.com/2009/05/small-rnas-get-smaller.html

http://finchtalk.blogspot.com/2009/05/small-rnas-get-smaller.html


Palazzo and Lee (2015) Front. Genet.,



Palazzo and Lee (2015) Front. Genet.,



Arcondeguy et al (2015) 

Gene and isoforms



Typical RNAseq Workflow 

1. Experiment / Generate data
2. Map or Assemble
3. Count  / Differential expression
4. Analysis





Pre-analysis

Core-analysis



Advanced-analysis (not covered in this lecture but should be mentioned)



1. Generate data



RNA-seq data generation

Griffith et al (2015) Plos Computational Biology 



RNA-seq data generation

RIN = 28S:18S ratio

Griffith et al (2015) Plos Computational Biology 





(exome)



General RNA library preparation workflow

i) RNA extraction and measuring
its integrity,

ii) rRNA is depleted (either using
poly(A)-selection or rRNA
depletion)

iii) the remaining RNA molecules
are fragmented, ideally achieving
a uniform size distribution.

iv) Double-stranded cDNA is
synthesized and the adapters for
sequencing are added to
construct the final library whose
fragment size distribution should
be unimodal and well-defined.



RNA-seq data generation ; cDNA
Total RNA Size selection

Griffith et al (2015) Plos Computational Biology 



RNA-seq data generation

Gel selection

Column selection

Enrich this

Griffith et al (2015) Plos Computational Biology 



Enriched cDNA  -> Added sequencing adaptors -> Sequencing

High coverage of Illumina allows multiplexing:
(Use of 4-6 nucleotides to identify different samples in the same run)



1.1 Data type



@D00368:375:HT3TKBCX2:1:1107:1135:2137 1:N:0:GTGGCC
CTCAGCCTTAGTGCTCAAGAAACGGGAGGGAGAGTCGATGT
CGGCGTTCATGGCCGACATCTGGATGAAGCGGTCGATATCGT
+
DDDDDHIIIIIIIIIIIIIIIIIIIHHIIIHHIIHIIIIIIIIIIHHHIHHIIHIIIIIIIIIIIHHIIIIIH
IHHHIIIIIIHIIHIIIHIIIHHIIGIICFHIIIIIIIIIIIHIHIHIIIIIIIIIIIHIIIIIIIHEDGH
@D00368:375:HT3TKBCX2:1:1107:1266:2124 1:N:0:GTGGCC
GTCTGACCTTGTCCACGCGAGATCGAGGACCGCCAGCGGCT
GATCTTGCAATGGCAGTTCCGACTGCGGTCCTTGCGTTGGA
+
DDDDDI?EEE?FHHIIIDHDDC?1F@EH<EGHIHIHIIGDH?<GHHH
HHHIIGHH?GHHE?GECEHHIHHCHHEEHHHHIICGE/?E<

Fastq file

Sequence name

Sequence

Quality score

+Seq 1

Seq 2

.

.

.

.



Evolution of RNAseq over time (from SRA)

Berge et al., Annual Review of Biomedical Data Science (2019)



Read mapping and transcript identification strategies



Read visualisation

Load reference, annotation and bam into a program

• Artemis http://www.sanger.ac.uk/science/tools/artemis
• IGV http://software.broadinstitute.org/software/igv/

http://www.sanger.ac.uk/science/tools/artemis
http://software.broadinstitute.org/software/igv/


Annotation: two genes of two orientations

Condition A from Illumina

Condition A from long read

Condition B from Illumina

Scenario 1

Hueimien Ke



Long reads have more errors

Hueimien Ke



Wrong annotation (wrong gene fusion / wrong 
exons) 

Hueimien Ke



Library enrichment result in sequencing  bias

https://doi.org/10.1186/gb-2014-15-6-r86

https://doi.org/10.1186/gb-2014-15-6-r86


2. Mapping



Read mapping and transcript identification strategies

Dündar et al (2018)



Read mapping and transcript identification strategies



General workflow for RNAseq to produce annotation

Options:
Align and then assemble
Assemble and then align

Align to
Genome
Transcriptome (if no genome)

Garber et al (2010)



Strategies for gapped alignments of RNAseq reads

Preferential alignment
(mismatch rather than split) 
to pseudogene

Garber et al (2010)



A potential mapping problem



Transcript reconstruction: Cufflinks and StringTie

Pertea et al (2015)



De novo assembly of transcriptomes



Workflow

QC

Assembly

(reference available)



Bushmanova et al (2019) GigaScience

Transcriptome assembly benchmarks



What is the best protocol for RNAseq analysis?

(Quick answer: no quick answer)



What analysis combinations should we do?

Sahraeian et al (2017) Nature Communications

… Here we conduct an extensive study analysing a broad spectrum of RNA-
seq workflows. Surpassing the expression analysis scope, our work also 
includes assessment of RNA variant-calling, RNA editing and RNA fusion 
detection techniques. Specifically, we examine both short- and long-read 
RNA-seq technologies, 39 analysis tools resulting in ~120 combinations, 
and ~490 analyses involving 15 samples with a variety of germline, cancer and 
stem cell data sets. 



Sahraeian et al (2017) Nature Communications



Can be ~10% difference in mapping

Sahraeian et al (2017) Nature Communications



Read mapping different amongst tools

Sahraeian et al (2017) Nature Communications



Performance of different transcriptome reconstruction schemes

Sahraeian et al (2017) Nature Communications



Typical RNAseq Workflow 

2.3 Annotation
(focus only on gene annotation)



Yandell and Ence (2012) 



Yandell and Ence (2012) 

Know your genome size (and gene numbers)



There’s always exceptions (due to TE Maverick expansion)

Ence (2014) 



Yandell and Ence (2012) 



Campbell and and Yandell (2015)

Multiple evidences; Update



Basic rule of thumb
Just genome with no closely related species

Different de novo predictors, and combine them with combiners

Genome + closely related species + RNAseq
de novo predictors + evidence + combiners

Genome + closely related species available + RNAseq
de novo predictors + evidence + RNAseq evidence + combiners

Genome + closely related species available + RNAseq + manual efforts
manual curation to train de novo predictors 
Trained predictors + protein evidence + RNAseq evidence + combiners

Genome + initial annotations + RNAseq
protein evidence -> Trying to improve existing annotations



Training

Libbrecht and Noble (2015)

A simplified gene-finding model that 
captures the basic properties of a 
protein-coding gene is shown. The 
model takes the DNA sequence of a 
chromosome, or a portion thereof, as 
input and produces detailed gene 
annotations as output. 

Note that this simplified model is 
incapable of identifying overlapping 
genes or multiple isoforms of the same 
gene. UTR, untranslated region.



Where to find initial “correct” genes



Combine multiple evidence will improve annotation 

Li et al (2015)



Novel isoforms

Li et al (2015)



Manual curation using artemis

Hueimien Ke



Functional annotation



Functional annotation

Genome

ATG STOP
AAAn

A B

Transcription

Primary Transcript

Processed mRNA

Polypeptide

Folded protein

Functional activity

Translation

Protein folding

Enzyme activity

RNA processing

m7G

Find function



Func%onal annota%on

59

Name the protein correctly

Attaching biological information to genomic elements

ØBiochemical function
ØBiological function
ØInvolved regulation and interactions
ØExpression

• Utilize known structural annotation to predicted protein sequence



Functional annotation – Homology Based

Most common way

Predicted Exons/CDS/ORF are searched against the non-
redundant protein database (NCBI, SwissProt) to search 
for similarities

Visually assess the top 5-10 hits to identify whether these 
have been assigned a function

Functions (and names) are assigned 



Other features which can be determined

• Signal peptides 
• Transmembrane domains
• Low complexity regions
• Various binding sites, glycosylation sites etc.
• Protein Domain
• Secretome

61
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SignalP: predicts the presence and location of signal 
peptide 



KEGG 

Help improve annotation by 
showing missing genes in 
essentail pathways 



Gene Ontology

• A controlled vocabulary for annotating three aspects of a gene 
product’s biology:

• Biological Process (BP) – the molecular, cellular, and 
organismal level processes in which a gene product is involved

• Molecular Function (MF) – the molecular activity of a gene 
product

• Cellular Component (CC) – the subcellular localization of a 
gene product



Gene Ontology

http://geneontology.org/docs/ontology-documentation/

“An ontology is a formal representation of a body of 
knowledge within a given domain. Ontologies usually 
consist of a set of classes (or terms or concepts) with 
relations that operate between them.”

“GO is loosely hierarchical, with ‘child’ terms being more 
specialized than their ‘parent’ terms, but unlike a strict 
hierarchy, a term may have more than one parent term.”

http://geneontology.org/docs/ontology-documentation/


BLAST2GO



Case study: eukaryote annotation (2018)

Zhu et al (2017) Nucleic Acids Research



Zhu et al (2017) Nucleic Acids Research



Zhu et al (2017) Nucleic Acids Research



Zhu et al (2017) Nucleic Acids Research



Case study: Annotation using long reads 

Cook et al (2017) Plant Physiology



Cook et al (2017) Plant Physiology



Cook et al (2017) Plant Physiology



Break



3. Differential expression



Types of experiments

• One genome or multiple genomes (Host / pathogens)
• Multiple alleles

• High heterozygosity
• Polyploidy
• Gene families

• Isoforms?
• Organ / Tissue / Cell type specific

• Laser Capture Microdissection
• single cell transcriptomics [not discussed]

• Time points
• Development
• Response to treatment (before, during, after)



$$$$$

Experimental design

***



How many reads are enough?

[2] https://support.illumina.com/bulletins/2017/04/considerations-for-rna-seq-read-length-and-coverage-.html

Genohub

Illumina

[1] https://genohub.com/next-generation-sequencing-guide/#depth2

https://support.illumina.com/bulletins/2017/04/considerations-for-rna-seq-read-length-and-coverage-.html
https://genohub.com/next-generation-sequencing-guide/


For isoform discovery, longer sequences are better

Au et al., (2014)



Auer et al., Genetics (2010)

Which of the following designs is correct?



Auer et al., Genetics (2010)

Which of the following designs is correct?

Balanced

Confounded



Example of batch effect:

Lin et al., (PNAS) 2014 



Example of batch effect:

Gilad and Mizrahi-Man (2015) F1000Research



Recapitulating the patterns reported by the mouse ENCODE papers

Gilad and Mizrahi-Man (2015) F1000Research



Clustering of data once batch effects are accounted for

Gilad and Mizrahi-Man (2015) F1000Research



Is trimming beneficial? 

http://genomebio.org/is-trimming-is-beneficial-in-rna-seq/

Del Fabbro C et al (2013) An Extensive Evalua.on of Read 
Trimming Effects on Illumina NGS Data Analysis. PLoS ONE 
8(12): e85024. doi:10.1371/journal.pone.0085024

“trimming is beneficial in RNA-Seq, SNP iden9fica9on 
and genome assembly procedures, with the best effects 
evident for intermediate quality thresholds (Q between 
20 and 30)”

“Although very aggressive quality trimming is common, this 
study suggests that a more gentle trimming, specifically of 
those nucleo9des whose Phred score < 2 or < 5, is op9mal for 
most studies across a wide variety of metrics.”

MacManes MD (2013)
On the optimal trimming of high-throughput mRNAseq 
data doi: 10.1101/000422

Erroneous bases 
in assembly

# complete exons

SoDware comparison, RNA/DNA-Seq Assembly-oriented, RNA-seq only

http://genomebio.org/is-trimming-is-beneficial-in-rna-seq/


My take: only trim data when you have to

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Good/Trimmed data Poor/Raw data

Base pair position of the read

Quality

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


3.1 Once you have mappings, you can start counting





Featurecount (much faster!)

Liao et al (2014)



Some QC is needed

• Which genes are highly counted?
• Any samples with a lot of missing/no count genes?
• Is there any biases on sequencing?
• Anything that may affect sample counts (like batch effect?)



Ambiguity in counting

We focus on the gene level: merge all counts over different isoforms into one, taking 
into account: 
• Reads that do not overlap a feature, but appear in introns. Take into account? 
• Reads that align to more than one feature (exon or transcript). Transcripts can be 

overlapping - perhaps on different strands. (PE, and strandedness can resolve this 
partially). 

• Reads that partially overlap a feature, not following known annotations. 



Transcript counting could be more robust in detecting changes



Outstanding problems in counting with exon merging model

Zhao et al ., PLOS one (2015)



But Differential transcript expression can lead to inflated false positive rate
(and more difficult to interpret biologically)

Soneson et al (2015)



So use isoform or not? 

http://www.rna-seqblog.com/modern-rna-seq-differential-
expression-analyses-transcript-level-or-gene-level/

“Unless the need dictates, answer the easier questions”

“There is no crisis; the impact of union vs. transcript 
counting in many datasets is rather small”

http://www.rna-seqblog.com/modern-rna-seq-differential-expression-analyses-transcript-level-or-gene-level/


We may end up counting full-length transcripts anyway

Pacbio IsoSeq



Counts of the gene depends on expression ,transcript length 
,sequencing depth and simply chance

This is the bit we care about!



Higher sequencing depth equals more counts



Counts are proportional to the transcript length x mRNA 
expression level

33% of highest expressed genes
33% of lowest expressed genes 

Oshlack and Wakefield (2009) Biology Direct. 



- Counts per million (CPM)

- R/FPKM: (Mortazavi et al. 2008)
- Correct for: differences in sequencing depth and transcript length
- Aiming to: compare a gene across samples and diff genes within sample

- TMM: (Robinson and Oshlack 2010)
- Correct for: differences in transcript pool composition; extreme outliers
- Aiming to: provide better across-sample comparability 

- TPM: (Li et al 2010, Wagner et al 2012)
- Correct for: transcript length distribution in RNA pool
- Aiming to: provide better across-sample comparability 

- Limma voom (logCPM): (Lawet al 2013)
- Aiming to: stabilize variance; remove dependence of variance on the mean

Normalization: different goals

https://haroldpimentel.wordpress.com/2014/05/08/what-
the-fpkm-a-review-rna-seq-expression-units/

https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review-rna-seq-expression-units/


RPKM shouldn’t be used for between sample comparisons
Boxplots of log2(counts + 1) for seven replicates in the M. 
musculus data, by normalization method.

Dillies et al (2013) Briefings in Bioinformatics



RPKM shouldn’t be used for between sample comparisons
C) Analysis of housekeeping genes for the H. 
sapiens data. (D) Consensus dendrogram of 
differential analysis results

Dillies et al (2013) Briefings in Bioinformatics



Summary of comparison results for the seven normalization 
methods under consideration

Dillies et al (2013) Briefings in Bioinformatics



Between sample comparisons 
• Differentially expressed genes = counts of genes change between 

conditions more systematically than expected by chance
• Need biological and technical replicates to detect differential 

expression



Replicate categories

http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf

http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf


Busby et al., Bioinformatics (2013)

Fitting a distribution for every gene for DE



The counts of technical replicates follow a poisson distribution 
(Marioni et al., 2008). So mean = count, variance = count



Four technical replicates



Poisson model seems good fit in technical replicates

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
367.1606&rep=rep1&type=pdf

Poisson fit
Lowess fit

http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi=10.1.1.367.1606&rep=rep1&type=pdf


Poisson model seems good fit in technical replicates

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
367.1606&rep=rep1&type=pdf

Poisson fit

Lowess fit

We call this overdispersion: the variance is 
higher for higher counts between biological 
replicates

http://citeseerx.ist.psu.edu/viewdoc/download%3Fdoi=10.1.1.367.1606&rep=rep1&type=pdf


Variance depends strongly on the mean

Negative binomial distribution

Poisson distributionPoisson v = μ
Poisson + constant CV v = μ + α μ2 (edgeR)
Poisson + local regression v = μ + f(μ2) (DESeq)

Technical replicate: Poisson 
Biological replicate: Negative binomial

For low counts, the Poisson (technical) variation or the 
measurement error is dominant. 

For higher counts, the Poisson variation gets smaller, 
and another source of variation becomes dominant, the 
dispersion or the biological variation. Biological 
variation does not get smaller with higher counts. 

Anders & Huber, 2010



Lots of Differential Gene Expression methods

Khang et al., (2015)



http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf

http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf


Scenario



Scenario



Scenario



RNAseq vs Microarray



Advances in quantification

Bray et al Nature Biotechnology (2016)



Spearman rank correlation of DEG results to qPCR measured 
genes

Sahraeian et al (2017) Nature Communications



Further analyses
3.2 Once you have set of differentially expressed genes



Summarization visualizing the expression data through heatmap ; 
Classification using Gene Ontology terms and metabolic annotations 

Treutlein et al., Nature (2014)



Clustering of the expression values and principal component 
analysis to reduce the variables.

Treutlein et al., Nature (2014)



Gene Ontology Enrichment analysis



Now, setting a cut-off? 

You choose a cutoff and look for “interesting” genes,
and try to make sense what’s going on. (0.05,0.01?)

Alternatively, you take all genes and rank 
them according to their pvalues
Advantage: No arbitrary cut off



Subramanian et al., PNAS (2005)

GSEA (Gene Set Enrichment Analysis) methods
(cut-off free approach)



Subramanian et al., PNAS (2005)

S1 is significantly enriched in females as expected, S2 is 
randomly distributed and scores poorly, and S3 is not 
enriched at the top of the list but is nonrandom, so it 
scores well.

GSEA (Gene Set Enrichment Analysis) methods
(cut-off free approach)



OXPHOS genes are all slightly
overexpressed (can‘t be detected by
simple cutoff)

Mootha et al., Nature Genetics (2003)

GSEA (Gene Set Enrichment Analysis) methods
(cut-off free approach)



Gene co-expression network

Dam et al (2018) Briefings in Bioinformatics



Gene co-expression network

https://en.wikipedia.org/wiki/Gene_co-expression_network

https://en.wikipedia.org/wiki/Gene_co-expression_network


Gene co-expression network

Dam et al (2018) Briefings in Bioinformatics



Overview of existing pathway analysis methods using gene 
expression data as an example (only applicable to model species)

Kharati et al., PLOS Computational Biology (2012)



Break



Further advances
Single cell RNAseq (ScRNAseq)



Evolution of single-cell isolation

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Microfluidic isolation in reagent- filled 
droplets

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Spatialomics

Stark et al., Nature Review Genetics (2019)

2. The mRNA diffuses to the slide surface and hybridizes to oligo- dT cDNA synthesis 
primers that encode UMIs and spatial barcodes. It is then reverse transcribed to 
produce cDNA, which is pooled for library preparation and sequencing. 

1. Spatial encoding requires a frozen tissue section to be 
applied to oligo- arrayed microarray slides or to ‘pucks’ of 
densely packed oligo- coated beads.

3. Computational analysis of the spatialomics data maps sequence 
reads back to their spatial coordinates after DGE analysis and allows 

differential spatial expression to be visualized.



Applications of scRNAseq computational approaches
1. Cell type identification

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Applications of scRNAseq computational approaches
2. Cell hierarchy reconstruction

Trajectory analysis 
pipeline (Monocle)

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Trajectory analysis 
pipeline (Monocle)

Huang et al., Experimental & Molecular Medicine (2018) 50:96

Applications of scRNAseq computational approaches
2. Cell hierarchy reconstruction



Applications of scRNAseq computational approaches
3. Inferring regulatory networks

Identifying modules of
co-regulated genes

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Applications of scRNAseq computational approaches
3. Inferring regulatory networks

Identifying modules of
co-regulated genes

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Applications of scRNAseq computational approaches
3. Inferring regulatory networks

Identifying modules of
co-regulated genes

Pseudotime + Clustering

Huang et al., Experimental & Molecular Medicine (2018) 50:96



Other approaches



nascent RNA 

Essentially enrich newly 
transcribed RNAs in a cell 
and compare to control (mature RNA)

Stark et al., Nature Review Genetics (2019)



translatome

• RNA-sequencing from ribsomally 
bound RNA

• mRNA ribosome density correlates 
with the protein synthesis level

(Ribo-seq)

Leave ribosome-
protected RNA

exposed RNA

Stark et al., Nature Review Genetics (2019)



RNA-RNA interaction
RNA-protein interaction

• A) Probe structured (ddRNA) or 
unstructured (ssRNA) RNA in
transcriptome level

• B) Crosslinking interacting RNA with
biotinylated psoralen

• C) Crosslinking immunoprecipitation of 
RNA followed by sequencing

Stark et al., Nature Review Genetics (2019)



Summary (I)



Overview of technologies

Stark, Grzelak and Hadfield (2019) Nature Reviews Genetics



Stark, Grzelak and Hadfield (2019) Nature Reviews Genetics

RNAseq analysis workflow for differential expression (generalized)



Summary / Our experiences

• Experimental design is key to correctly address your biological question
• Always use replicates (at least 5)
• Avoid de novo transcriptome assembly if you can

• DEseq2 are easy to use and have been standardised
• Cuffdiff2 are theoretically better but for some reasons are worse (since 

we used mostly 2-3 replicates)

• Still many challenges ahead

• Question: What will be integrated/obsoleted within 5? years with 
the arrival of long read sequencing



Which leads us to… a multi-omic perspective



Hain et al (2017) Genome Biology

Multiple omics data types

• Genome first or Phenotype first or 
environment first?

• Genome first -> GWAS

• “Locus-centered integration of additional 
omics layers can help to identify causal 
single nucleotide polymorphisms(SNPs) 
and genes at GWAS loci and then to 
examine how these perturb pathways 
leading to disease”



Integrating multi-omics to network

Dam et al (2016) Briefings in Bioinformatics 

Various additional data can then 
be used to enrich and extract 
biological relevant information 
from the network



Example: FTO 
GWAS locus

Claussnitzer et al (2015) N Engl J Med
Hain et al (2017) Genome Biology



Stuart and Satija (2019) Nature Review Genetics

Overview of current methods for single cell data integration



Example of experimental methods for performing single-cell multimodal
measurements

Stuart and Satija (2019) Nature Review Genetics



Multi-modal data can lead to better power at identifying cell states

Stuart and Satija (2019) Nature Review Genetics



Spatial omics + scRNA-seq

Stuart and Satija (2019) Nature Review Genetics



Spatial omics + scRNA-seq

Stuart and Satija (2019) Nature Review Genetics

Mapping smFISH cells onto scRNA-seq data allows the 
transfer of cell-type classifications derived from 
transcriptome-wide gene expression measurements 
to be transferred to the spatially resolved cells

mapping scRNA-seq data onto smFISH-profiled spatial 
coordinates can allow scRNA-seq data from 
dissociated cells to be placed back into their 
spatial context



Spatial omics + scRNA-seq

Stuart and Satija (2019) Nature Review Genetics

By mapping scRNA-seq-profiled cells onto spatially resolved coordinates through 
the integration with smFISH data, spatial patterns of gene expression can be 
predicted for any gene measured in the scRNA-seq data set. Through these 
predictions, novel spatial patterns of gene expression may be identified through 
the analysis of genes that were not profiled by smFISH



Summary (II) and Conclusion

Potential

• Single cell/nucleus RNAseq + spatial information + long read sequencing + direct 
RNA sequencing?! 

• It is an exciting time to be in

Challenges

• Data type gets extremely complicated
• Integrating different sources of data are powerful 
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