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This lecture is called “NGS”

Actually

* Next Generation Sequencing is really “now” sequencing

« Itwon’t be so easy to tell you everything about NGS
(it's a bit like saying what can we do with PCR?)



What is NGS?

= Next generation sequencing,
= deep sequencing

= High Throughput Sequencing,
= Massively parallel sequencing
= RERNER
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NGS = sequencing made cheaper, faster and
higher throughput



What we will cover today

NGS: Some basics
Sequencing platforms
Data types
Analysis:

 RNAseq

* 16S
 Metagenomics

Previous questions:
* microbiotafypaperZ /& Eapproach
* 16S sequencing region primer choice
« microbiota& [t Afecal transplantationzt2l?
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Genome

Genome = Parts list of a single genome



A genome project
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Three situations you are most likely to encounter

Genome reference is available (for example, humans):
 Re-sequence (DNA, RNA)
« Map (align) sequence to the genome

Genome reference is NOT available
 Assemble the reads to get the genome

Counting:
* For a given region (gene) we want to know how much.-> gene
expression or metagenomics



Why sequence a genome?

* Phylogenetic position

« Differences between species (comparative genomics)
« Variations between individuals (population genetics)

* Help to understand biology

« Of economic, agricultural, medical, ecology values

* Help to understand biology
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Discussion and debate
in scientific community

NRC report
i

Bacterial genome sequencing

H. flu E. coli 39 species
S. cerevisiae sequencing

C. elegans sequencing

D. melanogaster sequencing

A. thaliana sequencing

Other organisms

Nature 409, 860-921(15 February 2001)
doi:10.1038/35057062
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Calculating the economic impact of the
Human Genome Project

Public funding of scientific R&D has a significant positive impact on the wider
economy, but quantifying the exact impact of research can be difficult to assess. A
new report by research firm Battelle Technology Partnership Practice estimates that
between 1988 and 2010, federal investment in genomic research generated an
economic impact of $796 billion, which is impressive considering that Human
Genome Project (HGP) spending between 1990-2003 amounted to $3.8 billion.
This figure equates to a return on investment (ROI) of 141:1 (that is, every $1
invested by the U.S. government generated $141 in economic activity). The report
was commissioned by Life Technologies Foundation.

https://www.genome.gov/27544383/calculating-the-
economic-impact-of-the-human-genome-project/



FOCUS ON GENOMES OF ICELANDERS

ARTICLES
gnmeﬁcs

Here we describe the insights
gained from sequencing the whole

genomes of 2,636 Icelanders to a
median depth of 20x.

Large-scale whole-genome sequencing of the Icelandic edian dep
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A collection of Icelehdic genealogical
records dating back to the 1700s.

The bIood of a thousand Icelanders

Photo: Chris Lund
Nature Genetics volume 47, pages 435-444 (2015)



RARE GENETIC VARIANTS IN HEALTH AND DISEASE

https://www.uk10k.org/

The project is taking a two-pronged approach to identify
rare variants and their effects:

by studying and comparing the DNA of 4,000 people
whose physical characteristics are well documented,
the project aims to identify those changes that have no
discernible effect and those that may be linked to a
particular disease;

by studying the changes within protein-coding areas
of DNA that tell the body how to make proteins of
6,000 people with extreme health problems and
comparing them with the first group, it is hoped to find
only those changes in DNA that are responsible for the
particular health problems observed.

The project received a £10.5 million funding award from
Wellcome in March 2010 and sequencing started in late

2010. For more information, please use the links on the

right hand side.



United Kingdom

Genomics England 2012-

100,000 Genomes: rare disease, cancer
£350M (USD$485M)

Scottish Genomes £6M (USD$8M)
Welsh Genomics for Precision Medicine
£6.8M (USD$9M)

Northern Ireland Genomic Medicine
Centre £3.3M (USD$4.6M)

France Estonia
Genomic Medicine Plan 2016-2025 Estonian Genome Project 2000 —
Rare disease, cancer, mabg(aa»@?qm Infrastructure and population-based
(USD$799M) cohort
2017: €5M for 100,000 individuals
Netherlands
RADICON-NL 2016-2025

Rare disease Flnl_and
Health Research Infrastructure National Genome Strategy 2015-2020

Infrastructure
€50M (SUSD 59M)

Denmark

Genome Denmark 2012-

DK 86M (USD$13.5M)

FarGen 2011-2017

DK 10M (USD$1.6M)
Infrastructure, population-based

United States of America :
cohort, pathogen project

National Human Genome Research
Institute 2007-
Infrastructure and clinical cohorts Turkey

USD$427M
All of Us 2016-2025
Population cohort

Turkish Genome Project 2017-2023
Infrastructure, clinical and population-
based cohorts

USD$500M (first two years)

Japan
Japan Genomic Medicine Program, 2015-
Infrastructure, clinical and population-based
cohorts, drug discovery
JPY10.2B (USD$90.05M)
Qatar Australia
Qatar Genome 2015- Australian Genomics 2016-2021
Infrastructure, population cohort Infrastructure, rare disease and cancer
AUD$125M (USD$95M)
Genomics Health Futures Mission 2018-2028
AUD$500M (USD$372M)

Stark et al (2019) AJHG
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Taiwan Biohank
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https://www.twbiobank.org.tw/new_web/index.php

Whole exome sequencing and characterization of coding variation in
49,960 individuals in the UK Biobank

Authors: Cristopher V. Van Hout', Ioanna Tachmazidou?, Joshua D. Backman', Joshua X. Hoffman®, Bin

Ye', Ashutosh K. Pandey”, Claudia Gonzaga-Jauregui', Shareef Khalid', Daren Liu', Nilanjana Banerjee',

Alexander H. Li', Colm O’Dushlaine', Anthony Marcketta', Jeffrey Staples’, Claudia Schurmann’, Alicia
Hawes', Evan Maxwell', Leland Barnard', Alexander Lopez', John Penn', Lukas Habegger', Andrew L.

Blumenfeld', Ashish Yadav', Kavita Praveen', Marcus Jones’, William J. Salerno', Wendy K. Chung*, Ida

Surakka®, Cristen J. Willer’, Kristian Hveem®, Joseph B. Leader’, David J. Carey’, David H. Ledbetter’,

Geisinger-Regeneron DiscovEHR Collaboration’, Lon Cardon®, George D. Yancopoulos®, Aris

Economides®, Giovanni Coppola', Alan R. Shuldiner', Suganthi Balasubramanian', Michael Cantor’,

Matthew R. Nelson™", John Whittaker*", Jeffrey G. Reid" ", Jonathan Marchini ", John D. Overton" ",

1%

Robert A. Scott*', Gongalo Abecasis *, Laura Yerges-Armstrong’"‘, Aris Baras'* on behalf of the

Regeneron Genetics Center

https://www.biorxiv.org/content/10.1101/572347v1

Cold ® ®

Spring

= bioRyiv
Laboratory

THE PREPRINT SERVER FOR BIOLOGY

The UK Biobank is a prospective study of
502,543 individuals, combining extensive
phenotypic and genotypic data with
streamlined access for researchers
around the world.


https://www.biorxiv.org/content/10.1101/572347v1

Variants in WES, n=49,960

Median Per Participant (IQR)

Participants
# Variants # Variants

# Variants MAF<1% # Variants MAF<1%
Total 9,693,526 9,547,730 48,982 (627) 1,626 (133)
Targeted Regions1 4,735,722 4,665,684 24,332 (283) 780 (63)
Variant Type'
SNVs 4,520,754 4453941 23.529(276) 1391(61)
Indels 214968 211,743 803 (29) 42 (10)
Multi-Allelic 591,340 580,728 3,388 (63) 117 (18)
Functional Prediction
Synonymous 1,229,303 1,203,043 9,619 (128) 228 (28)
Missense 2,498,947 2,472,384 8,781 (137) 380 (39)
LOF (any transcript) 231,631 230,790 219 (16) 24 (8)
LOF (all transcripts) 153,903 153,441 1 0 15 (6)

https://www.biorxiv.org/content/10.1101/572347v1

Table 2 | Summary statistics for variants in sequenced

exomes of 49,960 UKB participants



https://www.biorxiv.org/content/10.1101/572347v1

Project setup

« Sequencing a species (Comparative genomics)
« Map, assemble

« Sequencing multiple individuals of a species (Population genomics)
 Map, count

« Combination of (1) and (2)



A small project’s typical output

Sample Name | Sample ID |Lane ID | Yield (Mb) | # of Reads
F2-1 SG-1B01 11,435 |75,729,838
F2-2 SG-1B02 12,014 79,561,504
F2-3 SG-1B03 11,577 |76,666,714
F3-2 SG-1B05 ’ 11,119 | 73,638,446
F3-4 SG-IB07 10,399 68,870,380
F3-5 SG-IB08 11,671 |77,292,976
F3-1 SG-1B09 12,474 |82,610,516
F3-3 SG-IB10 11,916 78,915,536
F2-1 SG-1B01 11,366 |75,271,724
F2-2 SG-1B02 11,920 78,940,010
F2-3 SG-1B03 11,481 76,031,166
F3-2 SG-IB05 5 11,054 73,203,066
F3-4 SG-IB07 10333 |68,429,564
F3-5 SG-IB08 11550 76,488,178
F3-1 SG-IB09 12328 |81,640,878
F3-3 SG-1B10 11812 |78,225,876

8 exome samples ;
2 lllumina Hiseq lanes with 184GB of data

~100X of human exome to detect disease
causing SNP

Higher yield at lower cost = More
samples can be barcoded into one lane

More samples = more replicates (power)
In statistical analysis to pick up real
biological difference
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the very beginnings of bioinformatics occurred more than 50 years ago, when desktop
computers were still a hypothesis and DNA could not yet be sequenced.”

The foundations of bioinformatics were laid in the early 1960s the application of

computational methods to protein sequence analysis (notably, de novo sequence assembly, biological
sequence databases and substitution models).

Later on, DNA analysis also emerged due to parallel advances in (i) molecular biology methods, which
allowed easier manipulation of DNA, as well as its sequencing, and (ii) computer science, which saw the
rise of increasingly miniaturized and more powerful computers, as well as novel software better suited to
handle bioinformatics tasks. In the 1990s through the 2000s, major improvements in sequencing
technology, along with reduced costs, gave rise to an exponential increase of data.

The arrival of ‘Big Data’ has laid out new challenges in terms of data mining and management, calling
for more expertise from computer science into the field.

A brief history of bioinformatics
Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome
Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063



https://doi.org/10.1093/bib/bby063
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A theoretical maximum of 50-60 amino acids can be sequenced ina | Leu = Gly
single Edman reaction. Larger proteins must be cleaved into smaller
fragments, which are then separated and individually sequenced. ve 1st residue

ASp . ket Gly

The issue was not sequencing a protein in itself but rather
assembling the whole protein sequence from hundreds of small
Edman peptide sequences. For large proteins made of several
hundreds (if not thousands) of residues, getting back the final
sequence was cumbersome. In the early 1960s, one of the first
known bioinformatics software was developed to solve this problem.

ﬂ}  Leu Gly

Figure 1. Automated Edman peptide sequencing. (A) One of the first automated peptide sequencers, designed by William J. Dreyer. (B) Edman sequencing: the first N-
terminal amino acid of a peptide chain is labeled with phenylisothiocyanate (PITC, red triangle), and then cleaved by lowering the pH. By repeating this process, one
can determine a peptide sequence, one N-terminal amino acid at a time. A brief history of bioinformatics

Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome
Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063



https://doi.org/10.1093/bib/bby063

Dayhoft: the first bioinformatician

Margaret Dayhoff (1925-1983)

« Designed one letter amino acid code

* Trained in quantum chemistry and
mathematics, she became interested in
proteins and molecular evolution around 1960.

» to explore mathematical approaches for
analysing amino-acid sequence data

» Her initial project was writing a series of
FORTRAN programs to determine the amino-
acid sequences of protein molecules.

Thr-His-Glu-Cys [Peptide]

Thr-His-Glu-Cys ~ Glu-Cys-Ala-Thr [Pept;de]
Glu-Cys-Ala-Thr Lys-Thr-His [Peptide]
Lys-Thr-His —p- | Met-Ile-Lys [Peptide]

Met-Ile-His e e
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr [Protein]

Figure 2. COMPROTEIN, the first bioinformatics software. (A) An IBM 7090 mainframe, for which COMPROTEIN was made to run. (B) A punch card containing one line of
FORTRAN code (the language COMPROTEIN was written with). (C) An entire program'’s source code in punch cards. (D) A simplified overview of COMPROTEIN's input
(ie. Edman peptide sequences) and output (a consensus protein sequence).

A brief history of bioinformatics
Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome
Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063

Hagen (2000) Nat Rev Genetics doi: 10.1038/35042090
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Ancestral sequences and Molecular clock (Emile Zuckerkand| and

Linus Pauling)
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Fic. 4. Probable evolutlonary relationship of some mammalian hemoglobin chains,

“Zuckerkandl and Pauling hypothesized that orthologous
proteins evolved through divergence from a common
ancestor. Consequently, by comparing the sequence of
hemoglobin in currently extant organisms, it became
possible to predict the ‘ancestral sequences’ of

hemoglobin and, in the process, its evolutionary history up
to its current forms”
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Evolutionary divergence and convergence in proteins
Zuckerkandl, E. and Pauling, L (1965)

A brief history of bioinformatics
Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome

Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063
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Relationships between sequences recapitulate evolutionary relationships

A B C

Unique ancestor of C

K Common ancestor of B and C




A mathematical framework for sequence alignments

A match +5 mismatch -4 gap -1

A i i Cc G

A 0 5 -1 -1 1 |
w®
T 0 4 10 <— 9 8
W
G 0 3 9 8 14

¢ ATCG

Best Alignment : I I I

(Score = 38)
AT G

i-1, j-1 i, j-1
A
i-1,j > i,j
Score
(i)

max

* Score (i-1, j-1)
+ Match / Mismatch

* Score (i, j-1) + gap
* Score (i-1, j) + gap

Table 1. An excerpt of the PAM1 amino acid substitution matrix

10* p? Ala Arg Asn Asp Cys Gln ... Val
A R N D C Q .. V
Ala A 9867 2 9 10 3 8 s 18
Arg R ] 9913 1 0 1 10 1
Asn N 4 1 9822 36 0 4 i)
Asp D 6 0 42 9859 0 6 1
Cys C i 1 0 0 9973 0 2
GIn Q 3 9 4 S5 0 9876 1
Val Vv 13 2 1 1 2 2 ... 9901

#Each numeric value represents the probability that an amino acid from the i-th
column be substituted by an amino acid in the j-th row (multiplied by 10 000).

A brief history of bioinformatics
Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome
Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063
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1970-2000s — Paradigm shifts and parallel advances in biology
and computer science

* Protein sequencing to DNA sequencing (faster / cheaper)
« Use DNA sequences to infer phylogenetic trees

« Sequence of marker genes and genomes

« Beyond sequences (structural bioinformatics)

« Faster computers

« GPUs

* Free software movement

 New Programming languages (Perl created by Larry Wall in 1987)

* Internet
* Online databases (NCBIs)

A brief history of bioinformatics
Jeff Gauthier, Antony T Vincent, Steve J Charette, Nicolas Derome
Briefings in Bioinformatics (2018) https://doi.org/10.1093/bib/bby063
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Different sequencing platforms /
History of sequencing



Proc. Natl. Acad. Sci. USA

Vol. 74, No. 12, pp. 5463-5467, December 1977

Biochemistry

DNA sequencing with chain-terminating inhibitors
(DNA polymerase /nucleotide sequences/bacteriophage $X174)

F. SANGER, S. NICKLEN, AND A. R. COULSON
Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, England

Contributed by F. Sanger, October 3, 1977

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/
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ABI 3730xi at TIGR (1.6Mb per day)

https://www.flickr.com/photos/jurvetson/57080968



World competing for sequencing power
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INTRODUCTION

[ Clip slide

History of DNA sequencing — Main players’ first commercial products and M&A
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lllumina HiSeq




Sequencing by synthesis

https://www.youtube.com/watch?v=fCd6B5HRaZ8



https://www.youtube.com/watch?v=fCd6B5HRaZ8

2 BILLION CLUSTERS
PER FLOW CELL
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Nature 456, 53-59 (6 November 2008)
| doi:10.1038/nature07517
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lllumina machines

Benchtop Sequencers Production-Scale Sequencers
A NovaSeq™ 6000

HiSeq X™ (5 or 10)
a
y

HiSeq™ 4000

NextSeq™ 550

1800Gb | 6B | 2x150 I 6000Gb | 208 | 2x150

1500Gb | 58 | 2x150

MiSeq™

MiniSeg™

iSeq™ 100

120Gh | 400M | 2x150

15Gb | 25M | 2x300

Increasing System Price & Output

7.5 Gb | 26M | 2x150

-!_?‘

Decreasing Price Per Gigabase (Gb)



And the arrival of 3rd generation sequencing...
(much longer read lengths and not so bad yield!!)



PacBio (Pacific Biosciences)

RSII Sequel |l



Single molecule sequencing

https://www.youtube.com/watch?v=NHCJ8PtYCFc



https://www.youtube.com/watch?v=NHCJ8PtYCFc

PacBio (Pacific Biosciences)

Start with high-quality
double stranded DNA

Ligate SMRThell
adapters and size select

Anneal primers and
bind DNA polymerase

Half of data in reads: >190 kb
Data per SMRT Cell: Up to 50 Gb

Produce HiFi reads using the circular consensus sequencing (CCS) mode

to provide base-level resolution with >99% single-molecule read accuracy Half of data ";;gg‘ﬁ;
for the detection of all variant types from single nucleotide to structural P S T " o W >
% F . ” ]
variants. Learn more about the advantages of long reads with high 250,000
9 9 g ! Top 5% of reads:
accuracy. ! >280 kb
: 5 e o i o
|
200,000 - I .
d Circularized DNA : :
.............................................. sicsaliipies :
repeated passes
%)
l T 150,000 -
— it | Q
i 5 x
...................................................... . : Longest read lengths:
The polymerase read e i
are tnn‘?s\ey:d of ada:taer: . - ds® 100,000 - >300 kb
to yield subreads - S— : r——-——--=- == g
A i p |
| |
| 50,000 -
e ) Consensusiscalled
& """""""""""" from subreads
HiFi READ
(>99% accuracy)
0 . : :
0 50,000 100000 150,000 200,000 250,000 300000 350000

Read Length

https://www.pacb.com/smrt-science/smrt-

sequencing/smrt-sequencing-modes/



https://www.pacb.com/smrt-science/smrt-sequencing/smrt-sequencing-modes/

Oxford Nanopore

TN

Key SmidgiON Flongle MiniON GridION PromethiON
System Price TBC Included in $5K Included in $1K Included in $50K Included in $135K
Starter Pack Starter Pack Starter Pack Starter Pack
Number of channels 200 channels 128 channels 512 channels 5%:512 =2.560* 48 x 3,000* =
144,000
Per flow cell TBC 1 -33Gb 17 -40 Gb 17 -40 Gb 125 -311 Gb

Current Data — Max Data

Per Device 85-200 Gb 3/6-20Tb

Current Data — Max Data

e T ErTT



Oxford Nanopore — how it works

Introduction to nanopore
https://vimeo.com/297106166

Voltrax
https://vimeo.com/297106291

Sequencing for farmers Rainforest

https://vimeo.com/294216876 https://www.youtube.com/watch?v=6RRSxWtJPUw
@ Oceans From Extreme to everyday
https://vimeo.com/294744892 https://www.youtube.com/watch?v=tQ oo7 36r8
Reference

https://nanoporetech.com/how-it-works

Nanopore Sequencing of Ebola Viruses Under Outbreak Conditions
https://www.youtube.com/watch?v=SYBzPEoENWI ; https://www.nature.com/articles/nature 16996
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https://vimeo.com/297106291
https://vimeo.com/294216876
https://www.youtube.com/watch?v=6RRSxWtJPUw
https://vimeo.com/294744892
https://www.youtube.com/watch?v=tQ_oo7_36r8
https://nanoporetech.com/how-it-works
https://www.youtube.com/watch?v=SYBzPEoENWI
https://www.nature.com/articles/nature16996

Read length and capacity go beyond
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Matthew Keller: Deployable NGS for Influenza virus field surveillance and outbreak
response

Mobile Influenza Analysis (MIA): Rapid and Portable
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https://nanoporetech.com/resource-centre/matthew-keller-
deployable-ngs-influenza-virus-field-surveillance-and-
outbreak
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Matthew Keller: Deployable NGS for Influenza virus field surveillance and outbreak
response

" Tom Connor 5

A& @tomrconnor

Within 24 hours of starting the @NetworkArtic PCR SARS_COV_2 Whole genome Sequencing

protocol on our viral extracts for @nanopore
sequencing our first sequences were up, available on
GISAID and had already been analysed by Nextstrain.

Incredible. @WalesMicrobiol @SmallRedOne RT Step =1 hr
@GenomicsWales twitter.com/nextstrain/sta... PCR ~2.30 hr
Nextstrain @nexistrain
Replying to @nextstrain Add Barcodes ~1hr
The two genomes from Wales each group the large Add Ad apter ~30m
European outbreak clade, but don't group together,
suggesting separate introductions. Thanks to Sequence ~1hr R N A t o)
@SmallRedOne, @tomrconnor, @PublicHealthW,

Analyse ~1hr

@WalesMicrobiol 2/3

answer

i

Of which ~1 hr

sequencing time

O 116 5:21 PM - Mar 7, 2020 ©)

https://nanoporetech.com/about-us/news/novel-
coronavirus-covid-19-information-and-updates https://nanoporetech.com/about-us/news/covid19-community
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NETWORK

About

The Project

This project is developing an end-to-end system for processing samples from viral outbreaks to generate real-time epidemiological information that is
interpretable and actionable by public health bodies. Fast evolving RNA viruses (such as Ebola, MERS, SARS, influenza etc) continually accumulate
changes in their genomes that can be used to reconstruct the epidemiological processes that drive the epidemic. Based around a recently developed,
single-molecule portable sequencing instrument, the Oxford Nanopore Technology MinlON, we are creating a ‘lab-in-a-suitcase’ that can be deployed to
remote and resource-limited locations. Targeting a wide-range of emerging viral diseases, the sequencing generation will be closely linked to the
analysis platform to integrate these data and associated epidemiological knowledge to reveal the processes of transmission, virus evolution and
epidemiological linkage with extremely rapid turn-around. This real-time approach will provide actionable epidemiological insights within days of

samples being taken from patients.

https://artic.network/ncov-2019
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NETWORK

NnCoV-2019

There is a pressing need to understand more about the short-term genomic epidemiology and evolution of the recently
described novel coronavirus (nCoV-2019). Initial cases were in Wuhan City, Hubei Province, China but now cases have been

confirmed both more widely in China and internationally.

Viral genome data generated prospectively during outbreaks can help provide information about relatedness to other viruses,

© mode and tempo of evolution, geographical spread and adaptation to human hosts. This information can be used to assist in

)
epidemiological investigations, particularly when combined with other types of data (e.g. case counts).
ART’Cnetwork i 2 e 3 / e eg )

http://artic.network | @NetworkArtic
. »

The ARTIC network is making available a set of materials (see below) to assist groups in sequencing the virus including a set of
primers, laboratory protocols, bioinformatics tutorials and datasets. These are mainly focused around the use of the portable Oxford Nanopore MinlON

seqguencer, although aspects of the protocol such as the primer scheme and sample amplification may be generalised to other sequencing platforms.

https://artic.network/ncov-2019
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'ﬁaNextstraln HELP DOCS BLOG LOGIN

Nextstram

Real-time tracking of pathogen evolution

Nextstrain is an open-source project to harness the scientific and public health potential of
pathogen genome data. We provide a continually-updated view of publicly available data
alongside powerful analytic and visualization tools for use by the community. Our goal is to aid
epidemiological understanding and improve outbreak response. If you have any questions, or
simply want to say hi, please give us a shout at hello@nextstrain.org.

https://nextstrain.org/



https://nextstrain.org/

( (—) - G % '@ & https://nextstrain.org/ncov e @ Y Yy N O QG 9 O % 0

@ wiFLs O focusmusic.im [ Microbial genome bi.. T Search torrent  [B Noun Project Icons SEEHMRIEE X Download YTS Torr.. (%) YouTube#MP3 () Toggl pr-menEn © RATHEE (E—.. »
N < Genomic epidemiology of novel coronavirus
Eoi 6 Maintained by the Nextstrain team. Enabled by data from @
{_lé RECTANGULAR Showing 955 of 955 genomes sampled between Dec 2019 and Mar 2020.
sz RADIAL Phylogeny RESET LAYOUT |
Admin Division v
4" UNROOTED
|#* cLock
Branch Length

TIME  DIVERGENCE

o Show confidence intervals
Branch Labels

none v

Search Strains

Taiwan/2/2020
Taiwan/3/2020 =
Taiwan/4/2020
Talwan/NTU01/2020 il
Taiwan/NTU02/2020
Talwan/NTU03/2020
Taiwan/CGMH- *:
CGU-01/2020 I
Taiwan/CGMH-
CGU-03/2020

Taiwan/CGMH-
CGU-04/2020

Taiwan/CGMH-
CGU-05/2020 4

2019-Dec-03 2019-Dec-17 2020-Jan-01 2020-Jan-15 2020-Jan-29 2020-Feb-12 2020-Feb-26 2020-Mar-11

Danal NntiAane

https://nextstrain.org/



https://nextstrain.org/

Scenarios now and then

lab/hospital/mountain/sea] Collect samples (1.1, 1.2, 1.3...)

lab/hospital] Extract DNA (2.1, 2.2, 2.3...)

lab/hospital/company] Sequencing (3.1, 3.2, 3.3...) Wee kS
lab/company] Analysis

lab/hospital] Report

a0 =

1. [lab/hospital/mountain/sea] Collect samples -> report Minute
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Three situations you are most likely to encounter

Genome reference is available (for example, humans):
 Re-sequence (DNA, RNA)
 Map sequence to the genome

Genome reference is NOT available
 Assemble the reads to get the genome

Counting:
* For a given region (gene) we want to know how much.-> gene
expression or metagenomics



What is an alignment”? (mapping)

Align the following two sequences:

ATTGAAAGCTA
GAAATGAAAAGG Scoring scheme is needed:
1:
~-ATTGAAA-GCTA 1 for ma_tCh

L] -1 for mismatch
GAAATGAAAAGG-—- _2 for gap

2
ATTGAAA-GCTA——-

-—--GAAATGAAAAGG

insertions / deletions (indels) mismatches
Which alignment 1is better?



Assembly

Original

(Scaﬂ‘olds are assembled from contigs, while contigs are assembled from reads)
sequence

f Reads B : Read 1 C contigs are j [
Snudaggeiggcked : Read 2 Cre assembled) 1
\sequencing reads y ; Resd 3 (ed frar reads) 1

Additional sequencing to
close contig gaps

Scaffold CScaffolds are assembled from contigs, while contigs are assembled from reads)

Figure 2 | Sequence read assembly. A mock example explaining bioinformatic
sequence assembly along with the terms sequence, reads, contigs and scaffolds.



Assembly

Genome

Sequence — — . — —

Paired-end reads

Assemble e’ Contig 10 Contig 19

Scaffold 1 Scaffold 2



Assembly
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Mapping

Reference genome depicting two example genes

Normal

TRE I EERTIAA?
f. ety
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= =
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33 523

=3 g%

O Variant base (coding)

doi:10.1038/nrgastro.2012.126

@ Variant base (noncoding)

A Variant base (coding)

= Discordant reads (structural variant)



Read length matters in sequencing

Figure 5. Two copies of a repeat along a genome. The reads colored in red and those colored in yellow
appear identical to the assembly program.

=

Figure 6. Genome mis-assembled due to a repeat. The assembly program incorrectly combined the
reads from the two coples of the repeat leading to the creation of two separate contigs

https://www.cbcb.umd.edu/research/assembly primer



Read length matters in sequencing

R1 R2

- _____

1 “X‘\N 100kb

...ATCGATGACTGACTGACTGGTTGAC...




Depth matters in sequencing

ATCGATGACTGACTGAATGGTTGAC
ATCGATGACTGACTGAATGGTTGAC
ATCCATGACTGACTGAATGGTTGAC
ATCGATGACTGACTGAATGGTTGAC
ATCGATGACTGACTGAATGGTTGAC
ATCGATGACTGAGTGAATGGTTGAC
ATCGATGACTGAGTGAATGGTTGAC
ATCGATGACTGAGTGAATGGTTGAC
ATCGATGACTGAGTGAATGGTTGAC
10X ATCGATGACTGAGTGAATGGTTGAC

Homozygous? Heterozygous?
1X ATCGATCACTGACTGACTGGTTGAC

...ATCGATGACTGACTGACTGGTTGAC...
reference



Filtering and annotating variants
Gl 6
gemini |

Annotate every \
o dbSNP  OMIM Ensembl CADD ENCODE GERP
V;: lant in VgF UCSC KEGG ESP  Polyphen HPRD FitCons
with information cii .
f ClinVar  Pfam 10006 | SIFT  COSMIC VISTA ClinVar

from (subset):

Variants, annotations, phenotypes & S I FT
genotypes together in a database F un Ctl on
Prioritize genetic variants in various disease contexts based on genome MAF (M Inor AI I ele freq u enCY)
annotations, sample genotypes, and sample relationships.
v v { {
Powerful ad hoc queries Family studies Tumor/Normal  Cohort studies
$ gemini query --query e o o o

“SELECT chrom, start, end, ref,
alt, gene, impact, aaf

FROM variants

WHERE in_dbsnp = @ I
and aaf < 0.01

and cadd_scaled_score >= 30
and is_loss_of_function =1
and my_disease_regions = 1

e

w/ disease
[ °
and gt_types.mom == HET %
and gt_types.dad == HET

and gt_types.child == HOM_ALT” w/0 disease

https://gemini.readthedocs.io/en/latest/
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Case studies



Classical genetics

\
\
\

~

\

Number of individuals

/ Phenotype /

Figure 2 | Strategies for finding disease-causing rare variants using exome sequencing. Four main strategies are
illustrated. a | Sequencing and filtering across multiple unrelated, affected individuals (indicated by the three coloured
circles). This approach is used to identify novel variants in the same gene (or genes), as indicated by the shaded region
that is shared by the three individuals in this example. b | Sequencing and filtering among multiple affected individuals
from within a pedigree (shaded circles and squares) to identify a gene (or genes) with a novel variant in a shared region
of the genome. c | Sequencing parent—child trios for identifying de novo mutations. d | Sampling and comparing the
extremes of the distribution (arrows) for a quantitative phenotype. As shown in panel d, individuals with rare variants in
the same gene (red crosses) are concentrated in one extreme of the distribution.

http://www.nature.com/nrg/journal/v12/n11/pdf/nrg3031.pdf



Comparative genom

Human

Bonobo |
Chimpanzee |
[Gorilla |

[Orang-utan

L E A

Gibbons

|

S

"Macaque]

Sooty mangabey

|

Baboon

African green monkey

Marmoset

Squirrel monkey

Sifaka

EIRMSEIRIEAESED

Mouse lemur
Aye-aye
w |ncomplete More copy- = Burst of segmental w Reduced
lineage sorting number changes duplications Alu insertions
=== Many chromosomal === [xpanded === Selection for twinning === Slow evolutionary
rearrangements MHC cluster and small body size rate

Roger & Gibbs Nature Reviews Genetics (2014)

Nature Reviews | Genetics

CS

D

Squirrel Blind Naked

Mouse Rat Capybara
mole rat mole rat
— I e T A s /S [ [ (S ME (o (i Ry ) 7Y ey ) s Ey) B o) R s
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Maximum lifespan (years)
Longevity-associated genes?

!

Compare genomes of rodents and other vertebrates
¢ SNP analyses

* Pseudogenization and gene loss

* Accelerated gene evolution etc.

— Compare to literature, combine with
‘omic’ data sets and validate experimentally

Refinement
* Bioinformatic methods
* Sequence additional species etc.

Nature Reviews | Genetics

doi:10.1038/nrg3728



Population genomics

GENOME
\ = enomicssimpiied | GENOMIC ANALYSIS
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http://www.genomenext.com/casestudies_post/population-
Novembre et al Nature (2008) scale-analysis-genomic-samples-analyzed-from-2504-
individuals-in-1-week/



Population genomics
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UK launches whole genome sequence alliance
to map spread of coronavirus

The Wellcome Sanger Institute will collaborate with expert groups across the country to
analyse the genetic code of COVID-19 samples circulating in the UK, providing public health
agencies with a unique tool to combat the virus

COVID-19 Genomics UK Consortium - comprised of the NHS, Public Health Agencies, Wellcome Sanger Institute, and
numerous academic institutions - will deliver large scale, rapid sequencing of the cause of the disease and share
intelligence with hospitals, regional NHS centres and the Government.

Samples from patients with confirmed cases of COVID-19 will be sent to a network of sequencing centres which currently
includes Belfast, Birmingham, Cambridge, Cardiff, Edinburgh, Exeter, Glasgow, Liverpool, London, Norwich, Nottingham,
Oxford and Sheffield.

The Wellcome Sanger Institute, one of the world’s most advanced centres of genomes and data, will collaborate with
expert groups across the country to analyse the genetic code of COVID-19 samples circulating in the UK and in doing so,
give public health agencies and clinicians a unique, cutting-edge tool to combat the virus.

By looking at the whole virus genome in people who have had confirmed cases of COVID-19, scientists can monitor

changes in the virus at a national scale to understand how the virus is spreading and whether different strains are
emerging. This will help clinical care of patients and save lives.

https://www.sanger.ac.uk/news/view/uk-launches-whole-genome-sequence-alliance-map-spread-coronavirus
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https://www.ncbi.nim.nih.gov/pubmed/28102248



Population genomics

There is a puzzling mismatch in the population history of the Pacific: why do most
people across Remote Oceania (the vast area stretching from Vanuatu to Easter
Island-Rapa Nui) speak languages of the Austronesian language family that expanded
into this region only 3,000 years ago, yet carry a component of genetic ancestry from
a much older source population in Near Oceania (the area including New Guinea and

its surrounding islands, see the top of Figure 1)?

‘ Migrations from Bismarck Archipelago to
Vanuatu begin. Complex, incremental
genetic replacement leaves
Al{_stronesian languages in situ.

Vanuatu

Credit: Hans Sell, MPI-SHH, adapted from Skoglund et al. 2016 Nature

doi:10.1038/s41559-018-0498-2

é

Modern humans arrive in Near Oceania.
Arrival in New Guinea ~50k years ago.
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Austronesian Expansion from
Taiwan. Lapita peoples reach

Vanuatu ~3k years ago.
Q. —— Philippines

Vanuatu



Metagenomics
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Precision medicine

— Personalized medicine (-- Average) State of

¢ | |— Precision medicine (-~ Average) the Union
.§

© [z

3 IR [ pep——— | - - 4 - o8
©

T

S

E

=

A e U S R TR O T A ., N e g

| | 2007 2008 2009 2010 2011 2012 2013 2014 2015
Ashley (2016) Nature Review Genetics



Outline of precision medicine

Re-evaluation and treatment update

Evaluate Outcomes

Treatment Plan 1 ,
- Progression free

Treatment Plan 2 survival
. - Mortality
/ HV VH\ . - Tumor response rate
e . , Treatment Plan n - Side effects
5 & & Clinical Data Physician Provider
/BNRNV RN
T $$$ 4
—_—
Cancer Patients
Health Insurance
T Cost TCoverage Clinical Guidelines v

Healthcare Coverage & Insurance Policy

Morash et al (2018) Journal of Personalized Medicine



PM examples

Ashley (2016) Nature Review Genetics

Table 1 | Examples of precision medicine

Condition
Mendelian disease

Cystic fibrosis

Long QT syndrome

Duchenne muscular
dystrophy

Malignant hyperthermia
susceptibility

Familial
hypercholesterolaemia
(FH)

Dopa-responsive
dystonia

Thoracic aortic
aneurysm

Left ventricular
hypertrophy

Precision oncology
Lung adenocarcinoma

Breast cancer

Gastrointestinal stromal
tumour

Melanoma
Pharmacogenomics

Warfarin sensitivity

Clopidogrel sensitivity,
post-stent procedure

Thiopurine sensitivity

Codeine sensitivity

Simvastatin sensitivity

Gene

CFTR

KCNQ1,KCNH2 and SCN5A

DMD

RYR1

PCSK9, APOB and LDLR

SPR

SMAD3,ACTA2, TGFBR1,

TGFBR2 and FBN1

MYH7.MYBPC3, GLA
and TTR

EGFR and ALK
HER2

KIT

BRAF

CYP2C9 and VKORC1

CYP2C19

TPMT
CYP2D6

SLCO1B1

Action

Specific therapies such as ivacaftor and a combination of
lumacaftor and ivacaftor

Specific therapy for patients with SCN5A mutations

Ongoing phase Il clinical trials of exon-skipping therapies

Avoid volatile anaesthetic agents; avoid extremes of heat

* Heterozygous FH (HeFH): eligible for PCSK9 inhibitor drugs
* Homozygous FH (HoFH): eligible for PCSK9 inhibitor drugs
in addition to lomitapide and mipomersen

Therapy with dopamine precursor L-dopa and the serotonin
precursor 5-hydroxytryptophan

Customization of surgical thresholds based on patient
genotype

Sarcomeric cardiomyopathy. Fabry disease and transthyretin
cardiac amyloid disease have specific therapies

Targeted kinase inhibitors, such as gefitinib and crizotinib

HER2 (also known as ERBB2)-targeted treatment, such as
trastuzumab and pertuzumab

Targeted KIT kinase activity inhibitors, such as imatinib

BRAF inhibitors, such as vemurafenib and dabrafenib

Adjust dosage of warfarin or consider alternative
anticoagulant

Consider alternative antiplatelet therapy (for example,
prasugrel or ticagrelor)

Reduce thiopurine dosage or consider alternative agent

Avoid use of codeine; consider alternatives such as morphine
and non-opioid analgesics

Reduce dose of simvastatin or consider an alternative statin;
consider routine creatine kinase surveillance



Summary of outcomes in Oncology PM Studies

Study

Sample Size

Most Prevalent Tumor Types

Outcomes Reported

Tsimberidou et al.
Clin. Cancer Res. 2012 [5]

291 patients with one molecular
aberration (175 treated with
matched therapy, 116 control)

Colorectal, melanoma,
lung, ovarian

Matched group had improved
ORR (27% vs. 5%), TTF (median
5.2 yvs. 2.2 month), OS (median
13.4 vs. 9.0 month)

Radovich et al.
Oncotarget 2016 [6]

101 patients with sequencing and
follow up (44 treated with
matched therapy, 57 control)

Soft tissue sarcoma,
breast, colorectal

Matched group had improved
PFS (86 vs. 49 days)

Schwaederle et al.
Mol. Cancer Ther. 2016 [7]

180 patients with sequencing and
follow up (87 treated with
matched therapy, 93 control)

Gastrointestinal, breast, brain

Matched group had improved
PFS (4.0 vs. 3.0 month), TRR
(34.5% vs. 16.1% achieving
SD/PR/CR)

578 patients with oncogenic driver

Matched group had improved

Kris etal. JAMA 2014 [8]  and followup (260 with matched Lung only survival (median 3.5 vs.
therapy, 318 control) 2.4 years)
Kol st bl 187 patients with targetable Matched group had improved
; alteration and follow up (112 with Lung only survival (median

J. Clin. Oncol. 2016 [9]

matched therapy, 74 control)

2.8 vs. 1.5 years)

Stockley et al.
Genome Med. 2016 [10]

245 patients with sequencing
matched to clinical trials (84 on
matched trial, 161 control)

Gynecological, lung, breast

Matched group had improved
ORR (19% vs. 9%)

LeTourneau et al. Lancet
Oncol. 2015 [11]

RCT with 195 patients with
molecular aberration (99 treated
with matched therapy, 96 control)

Gastrointestinal, breast, brain

No difference in PFS
between groups

ORR = overall response rate, TTF = time to treatment failure, OS = overall survival, PFS = progression free survival,
TRR = tumor response rate, SD = stable disease, PR = partial response, CR = complete response, RCT = randomized
controlled trial. Matched group indicates patients matched to a therapy based on sequencing results.

Morash et al (2018) Journal of Personalized Medicine



Patient Clinician

REVIEW

doi

Electronic health record

Building the foundation for tiont samples
genomics in precision medicine I II

Samuel J. Aronson"’ & Heidi L. Rehm"*** Case-level database o
Researcher « Genotypes Clinical laboratory

« Phenotypes and outcomes
. Fami'lyt:gg?d medical history .

+ Environment and exposures '

_Research database
» Research-derived data

¢ Knowledge sharing

Other
institutions

doi:10.1038/nature15816



Building the foundation for genomics in precision
medicl

Clinicians Computer scientists Laboratory workers

!

Genetic
interpretation

!

Multiple
implementations
linked by interface

Figure 3 | Creating and implementing robust standards for the description
and structuring of data in laboratory processing and patient-care systems.
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doi:10.1038/nature



Challenges and reduced accuracies

Pool of sequenced short reads

I<—|

— {7

( (”‘*”1 AT
I||

Challenges of sequencing

¢ Regions of high GC content are challenging to
sequence and require optimized chemistry

* Enrichment by capture can result in uneven
sequencing coverage

Computational burden of de novo assembly
means alignment to reference is necessary

Unmapped reads

e Repeat regions make up 50% of the genome

¢ The origin of short reads is unclear for paralogous
sequences

Missed variants

Reference genome contains disease variants,
causing homozygous patient variants to go uncalled

Long repeats
When read is shorter than repeat tract,
the length cannot be resolved

Ashley (2016) Nature Review Genetics

Accuracy

of calling

N

SNV

Small

indel

l

Large

indel

SV

Highly polymorphic regions and compound
variants
Phase required to resolve

Accuracy of variant calling falls with increasing
disruption of the open reading frame



Challenges and reduced accuracies
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5= Accuracy of variant calling falls with increasing g
g3 disruption of the open reading frame Repeat Disease Gene Repeat Repeat length
<% location sequence )
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l s, [ragile XE mental retardation FRAXE GCC == -
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* File of appropriately called variants Dentatorubral-pallidoluysian atrophy ATN1 CAG D
® The VCF should contain a call at every position or . oo .
patients homozygous for risk alleles present in the Friedreich’s ataxia FXN GAA NN
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Ashley (2016) Nature Review Genetics



Resolution

Zoomed out
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Transcriptomics / RNAseq



Applications of RNAseq

Discovery / Annotation

* Find new genes

* Find new transcripts

 Find new ncRNAS, xxx, Xxx ....
* (Gene fusion

Comparison / Quantification : given X conditions, find the effect of Y on
e expression
* Isoform abundance, splice patterns, transcript boundaries



Introduction to differential gene expression analysis using

RNA-seq

Written by Friederike Diindar, Luce Skrabanek, Paul Zumbo

September 2015
updated March 20, 2018

http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf



http://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf

RNA-seq data generation

Samples of interest Isolate RNAs Generate cDNA, fragment,
size select, add linkers

Condition 1 Condition 2 MM/WWWVVMNM . . g u .
(e.g. tumor) (e.g. normal) | . B " s

Poly(A) tail l

Map to genome, transcriptome,
and predicted exon junctions

Intron pre-mRNA

Exon Unsequenced RNA RNA reads
- |

[ B R — ] b

Transcript fa] ) v — " - — mmy S—

Shortreads =—fF—=——=—-= — T e
—_— —_— S—— T S— n

Short reads Short insert
split by intron

100s of millions of paired reads
l 10s of billions bases of sequence

Downstream analysis , _ ,
*https://doi.org/10.1371/journal.pcbi.1004393



https://doi.org/10.1371/journal.pcbi.1004393

Types of experiments



Transcriptome Complexity:
Simple System:

One Genome => Gene 1 copy => Single mRNA

Gene

|

Genome O
mRNA mRNA POPuato>

Single Cell




How many species we are analyzing ?
1) Problems to isolate a single species (rhizosphere)
2) Species interaction study (plant-pathogen)

mRNA population

Pathogen




How many isoforms we expect for each allele ?
1) Alternative splicings

Genome T mRNA population

-
A
.
-
*
-
*
L
-
*
.‘
.




Is the study performed at different time points?
1) Developmental stages (difficult to select the same)
2) Response to a treatment

O O O
5 S5 @‘0
|

—

I » time
3



Is the study performed with different parts?
1) Organ specific
2) Tissue/Cell type specific

(Laser Capture Microdissection, LCM)

mRNA population




Experimental design

~ N ~ 2
Genomic Biological
Considerations Considerations
Number of Species Organ/Tissue/Cell Type
Polyploidy/Heterozygosity Developmental Stage
Treatments
< Y, . >,
-
Economical Technical
Considerations Considerations
$$55% Skills/Hardware
e / (Controls Replicates) .

**k*

( Technology Used )
( Library Preparation I Sequencing Amount )

C Analysis Pipeline )




Prep and treatment



Sequencing of multiple samples can be performed using multiplexing.

The multiplexing add a tag/barcode of 4-6 nucleotides during the library
preparation to identify the sample. Common kits can add up to 96 different
tags.

Control - mRNA preparation
extraction and

multiplexing
— — | —
ATCGTA

Treatment +

CGATCG S ——
—_— R e
Library \




Which of the following designs is correct?

Auer et al., Genetics (2010)

* Treatment

+ Biological replicate

* RNA extraction

+ Bar-code and pool

* Preparation for sequencing

» Sequence technical replicates

"

Lane 1 Lane 2 Lane 3 Lane 4 Lane5 Laneb

* Treatment

* Biological replicate

* RNA extraction and

preparation for
sequencing

» Sequence each
sample in a lane

!

Lane1 Lane2 Lane3 Laned Lane5

Lane 6




Which of the following designs is correct?

* Treatment

+ Biological replicate

* RNA extraction

Balanced

+ Bar-code and pool

* Preparation for sequencing

» Sequence technical replicates

Auer et al., Genetics (2010)

"

Lane 1 Lane 2 Lane 3 Lane 4 Lane5 Laneb

* Treatment

* Biological replicate

* RNA extraction and

preparation for
sequencing

» Sequence each
sample in a lane

Confounded

'

Lane1 Lane2 Lane3 Laned Lane5 Laneb




Example of batch effect:

s &83838°

Lin et al., (PNAS) 2014
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Example of batch effect:

D87PMIN1
(run 253,

flow cell
D2GUAACXX,
lane 7)

heart
kidney

liver

small bowel
spleen

testis

D87PMIJN1
(run 253,
flow cell
D2GUAACXX,

lane 8)
adipose
adrenal

sigmoid colon

lung

ovary

D4LHBFN1 MONK HWI-ST373

(run 276, (run 312, (run 375,

flow cell flow cell flow cell
C2HKJACXX, C2GR3ACXX, C3172ACXX,

lane 4) lane 6) lane 7)

adipose heart brain

adrenal kidney pancreas

sigmoid colon liver brain

lung small bowel spleen

ovary testis ® Human
pancreas ® Mouse

http://f1000research.com/articles/4-121/v1
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Recapitulating the patterns reported by the mouse ENCODE papers
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Clustering of data once batch effects are accounted for
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Once you have mappings, you can start counting



'Exons' are the type of features used here.
They are summarized per 'gene'

ChiaR

B vV e

il

=D,
{f
Il

Alt splicing ~

|

Overlaps no feature

Concept:

GeneA = exon 1 +exon2+exon3+exond4 =215reads
GeneB = exon 1 +exon 2 + exon 3 =180 reads



This Is the bit we care about!

/

Counts of the gene depends on expression ,transcript length
,sequencing depth and simply chance



Counts are proportional to the transcript length x mRNA
expression level
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33% of highest expressed genes
33% of lowest expressed genes

Oshlack and Wakefield (2009) Biology Direct.



Normalization: different goals

R/FPKM: (Mortazavi et al. 2008)
- Correct for: differences in sequencing depth and transcript length
- Aiming to: compare a gene across samples and diff genes within sample

TMM: (Robinson and Oshlack 2010)
- Correct for: differences in transcript pool composition; extreme outliers
- Aiming to: provide better across-sample comparability

TPM: (Li et al 2010, Wagner et al 2012)
- Correct for: transcript length distribution in RNA pool
- Aiming to: provide better across-sample comparability

Limma voom (logCPM): (Lawet al 2013)
- Aiming to: stabilize variance; remove dependence of variance on the mean

Optimal Scaling of Digital Transcriptomes

Gustavo Glusman [E], Juan Caballero, Max Robinson, Burak Kutlu, Leroy Hood

Published: Nov 06, 2013 « DOI: 10.1371/joumnal.pone.0077885



But how do you know your count = 2 is really 27?

« Differentially expressed genes = counts of genes change between
conditions more systematically than expected by chance

* Need biological and technical replicates to detect differential
expression



Differential expression



Fitting a distribution for every gene for DE

Probabilility

0.05; 0.02
—Control
! — Test
Hiod 0.015}
0.03} | E
f§ 0.01}
0.02} 1©
a
0.01! \ 0.005}
% 100 200 300 400 %

Identified as leferentually Expressed

Not Identified as leferentlally Expressed

S Control
— Test

True Expression Level

100 200 300 400
True Expression Level

. Busby et al., Bioinformatics (2013)



Scenario

gene_id CAF0006876

" samplel sample2 sample3 sample4 sample5 sample6 sample7 sample8
Condition A 3.5, 22903 29227 24072 23151 26336 25252 24122

Conditi B Sample9 samplel0 samplel1 sample12 sample13 samplel4 sample15 samplel6
ondition 19527 26898 18880 24237 26640 22315 20952 25629

09

0,8

0,7

0,6

05 @ CondA
@ CondB

04

03-

0,2

0,1

WL JAKONIX

ﬁg 'fk' ?8000 = 020000 - 2200? - 240'0.0 ‘36000.“ 28000 ‘3oooo 9 of 44



Scenario

gene_id CAF0006876

ape samplel sample2 sample3 sample4 sample5 sample6 sample7 sample8
Condition A ;3:%; 22903 29227 24072 23151 26336 25252 24122

Conditi B Sample9 sample10 samplel1 samplel2 samplel3 samplel4 samplel5 sampleil6
ondition 19527 26898 18880 24237 26640 22315 20952 25629

NB model is estimated

09

08 -

0,7

06

@ CondA

0,5
@ CondB

04
03
0,2 -

0,1

WY JAKONIX
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Scenario

gene_id CAF0006876

syt samplel sample2 sample3 sample4 sample5 sample6 sample7 sample8
Condition A 357 22903 29227 24072 23151 26336 25252 24122

aas Sample9 samplel0 samplel1 sample12 sample13 samplel4 sample15 samplei16
Condition B g5, 26398 18880 24237 26640 22315 20952 25629

, NB model is estimated:
i / 2 parameters: mean and
s dispersion needed.
07 Difference is put into p-value
0,6
05 @ CondA
@ CondB

04
03
0,2

0,1

B JAKONIX

=a U o 20 0 20 o w0 o 11 of 44



Once you have set of differentially expressed genes



Summarization visualizing the expression data through heatmap ;
Classification using Gene Ontology terms and metabolic annotations
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Treutlein et al., Nature (2014)



Amplicon / Metagenomics: An Intro
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Examples in 1

3 CELLULAR AND MOLECULAR
GASTROENTEROLOGY AND HEPATOLOGY

ORIGINAL RESEARCH

Predicting Clinical Outcomes of Cirrhosis Patients With Hepatic ®
Encephalopathy From the Fecal Microbiome

Chang Mu Sung,'*** Yu-fei Lin,°* Kuan-Fu Chen,*** Huei-mien Ke,” Hao-Yi Huang,’
Yu-Nong Gong,”* Wen-Sy Tsai,” Jeng-Fu You,” Meiyeh J. Lu,” Hao-Tsai Cheng,’"
Cheng-Yu Lin," Chia-Jung Kuo,' Isheng J. Tsai,” and Sen-Yung Hsieh"'”

GUT MICROBES :
2021, VOL. 13, NO. 1, 10 Taylor & Francis

https://dol.org/10.1080/19490976.2020.1832856 Tofcfmh Growp

RESEARCH PAPER a OPEN ACCESS M) Crook e updates

The rectal mucosal but not fecal microbiota detects subclinical ulcerative colitis

Yu-Fei Lin***, Chang Mu Sung(**, Huei-Mien Ke (", Chia-Jung Kuo®, Wei-an Liu{*, Wen-Sy Tsai/ ¥,
Cheng-Yu Lin®, Hao-Tsai Cheng® Meiyeh J Lu? Isheng. J. Tsai®, and Sen-Yung Hsieh ("¢

“Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; “Department of Gastroenterology and Hepatology, Chang Gung Memorial
Hospital, Taoyuan, Taiwan; ‘Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan; “Division of Colorectal
Surgery, Chang Gung Memorial Hospital, Chang Gung University, Tacyuan, Taiwan; “Graduate Institute of Biomedical Sciences, College of
Medicine, Chang Gung University, Taoyuan, Taiwan



@:@ TECHNIQUES, TECHNOLOGY & ANALYSIS

A clinician’s guide to microbiome
analysis

Marcus J. Claesson’2*, Adam G. Clooney'>* and Paul W. O’Toole'?

Abstract | Microbiome analysis involves determining the composition and function of a
community of microorganisms in a particular location. For the gastroenterologist, this
technology opens up a rapidly evolving set of challenges and opportunities for generating novel
insights into the health of patients on the basis of microbiota characterizations from intestinal,
hepatic or extraintestinal samples. Alterations in gut microbiota composition correlate with
intestinal and extraintestinal disease and, although only a few mechanisms are known, the
microbiota are still an attractive target for developing biomarkers for disease detection and
management as well as potential therapeutic applications. In this Review, we summarize the
major decision points confronting new entrants to the field or for those designing new projects
in microbiome research. We provide recommendations based on current technology options
and our experience of sequencing platform choices. We also offer perspectives on future
applications of microbiome research, which we hope convey the promise of this technology

for clinical applications.

https://www.nature.com/articles/nrgastro.2017.97.pdf



https://www.nature.com/articles/nrgastro.2017.97.pdf

Key points

e Complex communities of microorganisms live on and in the human body, and
variations in the composition and function of these communities are increasingly
linked to various conditions and diseases

 Although it is not known if microbiome changes are causative or consequential in most
pathophysiologies, they might provide biomarkers for disease detection or management

* Microbiome analysis is likely to become a routine component of secondary health
care and is emerging as a modifiable environmental risk factor in multifactorial
diseases that could be targeted by novel therapeutics

e Technology advancements are leading to a range of powerful methods for
microbiome analysis becoming available and affordable for clinical studies

* Judicious choice of sample type and sequencing platform are required to maximize
the clinical utility of microbiome data

https://www.nature.com/articles/nrgastro.2017.97.pdf
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What is the microbiome?

) S e -/ 1) A

Fungi in Biological Control Systems (1988)

A convenient ecological framework in which to examine biocontrol
systems is that of the microbiome. This may be defined as a characteristic
microbial community occupying a reasonably well defined habitat which

has distinct physico-chemical properties. The term thus not only refers to
the microorganisms involved but also encompasses their theatres of ac-
tivity. In relation to fungal diseases of crops and their control, major
microbiomes are the phylloplane, spermosphere, rhizosphere and rhizo-
plane, and numerous kinds of plant residues persisting on or in the soil.
Mention should also be made of the wood of standing or felled trees as
microbiomes where biocontrol of forest diseases using fungi has been
achieved. However, in most cases competitive interactions other than
mycoparasitism seem to be of greater importance.

http://microbe.net/2015/04/08/what-does-the-term-
microbiome-mean-and-where-did-it-come-from-a-bit-of-a-
surprise/
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And then what is the metagenome?

Crosstalk R245

OSSr‘

Molecular biological access to the chemistry of unknown &%
soll microbes: a new frontier for natural products -,}} 5
Jo Handelsman!, Michelle R Rondon', Sean F Brady?, Jon Clardy? and

Robert M Goodman?

Chemistry & Biology October 1998, 5:R245.249
hitp://biomednet.com/elecref/10745521005R0245

F155°

... This approach involves directly accessing the genomes of
soil organisms that cannot be, or have not been, cultured by

isolating their DNA



What is amplicon sequencing?

Anything that requires PCR-based amplification of a
specific target gene (locus)

4th cycle
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Exponential amplification
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And then what is the metagenome?

OPEN a ACCESS Freely available online

S AG
PLOS computaTionaL BIOLOGY

Bioinformatics for Whole-Genome Shotgun
Sequencing of Microbial Communities

Kevin Chen’, Lior Pachter

Metagenomics is the application of
modern genomics techniques to the
study of communities of microbial
organisms directly in their natural

environments, bypassing the need for
isolation and lab cultivation of individual
species. The field has its roots in the
culture-independent retrieval of 16S rRNA
genes, pioneered by Pace and colleagues
two decades ago.



Pubmed hits for “Microbiome”
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Jonathan Eisen, Slideshare



Metagenomics # Amplicon sequencing



Metagenomics Is undergoing a crisis

Please don’t make things worse ©

* Crisis 1
— The correlation/causation fallacy. For example....

— Patients with type |l diabetes have a different gut microbiome
compared to healthy patients

— Does the microbiome cause diabetes?

— Or do they have a different microbiome because they have
diabetes? (therefore different diet)

e Crisis 2
— Alot of people want to do it, but don’t know how
— Errors, bad experimental design, incorrect conclusions

Mick Watson, Slideshare



Basic Purpose

Characteristics of (microbial) community

Who are they?
Where do they come from?
Are their similarities (at what level)
between communities
of different conditions
of similar conditions?
within a community?
What are they doing?
How are they doing?
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Study design, sample collection, storage and DNA/cDNA/RNA extraction

;

Marker gene/transcript amplification and sequencmg
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Pre-processing

* Sequence read quality check and filtering
® Chimaera removal
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Metagenomic or metatranscriptomic shotgun sequencing
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Pre-processing
» Sequence read quality check and filtering
¢ Filtering contaminants and human reads

) Filtering
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OTU clustering

v '

Diversity Taxonomic Functional
analysis classification analysis
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Statistical analysis

e Differential abundance of taxa, gene or transcript functions
» Comparisons of alpha and beta diversity

* Correlations between taxa and metadata

\

J

v
Assembly
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Gene prediction and j Phylogenetic binning j

functional annotation

and classification

4 J

b

Statistical analysis
» Differential abundance of taxa, gene

or transcript functions and pathways
* Comparison of gene or transcript counts
* Comparison of low abundance taxa
* Correlations between taxa and metadata
e |dentification of possible biomarkers

4

Figure 1 | Flowchart of the major steps involved in bioinformatic analysis of the microbiome. The analysis is divided
into two sections depending on the type of sequencing. This schematic describes the basic steps and might vary depending
on the aim of the analysis. OTU, operational taxonomic unit.



Applications



What have metagenomics been used for?

Exploration and categorisation

Rusch et al., 2007 Plos Qin et al., 2010 Nature

Biology
* 6.3 Gbp of sequence (2x Human + 127 Human gut metagenomes
genomes, 2000 x Bacterial genomes) « 600 Gbp sequence (200 x Human
+ Most sequences were novel compared genomes)
to the databases + 3.3 million genes identified

* Minimal gut metagenome definded

Actinobacteria
B Corynebacterium
BN Propionibacterium

[ Bacteroidetes

Firmicutes
W Loctobacilius
B Staphylococcus
[ Streptococcus
Wl Other Firmicutes

== Fusobacteria
[ Proteobacteria

Mouth: saliva

Mouth: gingiva

Mouth: tongue

|

Skin:

retroauricular
crease

Mouth: tonsils

Gut: stool

v 4

antecubital fossa U

/ I

I

Grice and Segre (2012)

3 Other Actinobacteria



What have metagenomics been used for?

C t .
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Canonical discriminant function 1 (¢ ¥ Freshwater

Dinsdale et al., 2008 Nature

A characteristic microbial
fingerprint for each of the nine
different ecosystem types

Specific functions

@ Subterranean

O Hypersaline

v Marine

¥ Freshwater

@ Coral

O Microbialites

& Fish

© Terrestrial animals
@ Mosquito

Hess et al., 2011 Science

* |dentified 27.755 putative carbohydrate-active
genes from a cow rumen metagenome

« Expressed 90 candidates of which 57% had
enzymatic activity against cellulosic substrates



What have metagenomics been used for?
Extracting genomes

a

cccccccccccc

Garcia Martin et al., 2006 Nat. Biotechnol. Albertsen et al., 2013 Nat. Biotechnol.

« Genome extraction from low complexity metagenome

« Candidatus Accumulibacter phosphatis

 The first genome of a polyphosphate accumulating
organism (PAQO) with a major role en enhanced
biological phosphorus removal

» Genome extraction of low abundant species
(< 0.1%) from metagenomes

* First complete TM7 genome

« Access to genomes of the "uncultured
majority”



Concept: OTU (Operational Taxonomic Unit)



OTU for Ecology

Operational Taxonomic Unit: a grouping of similar
sequences that can be treated as a single “species”

Strengths
— Conceptually simple
— Mask effect of poor quality data
Sequencing error
In vitro recombination
Weaknesses
— Limited resolution
— Logically inconsistent definition

Slide of Aaron Darlin



Assign OTU

« Cluster by their similarity to other sequences in the sample
(operations taxonomic units > OTU)
* 95% genus level, 97% species level, 99% strain level

16S

OTU Count

3
—_— 11

3
Clustering”®

l Assign taxonomy (Compare to database)

OTU Count

3  Accumulibacter
11 Unkown
3  Competibacter

OTU table




Logical inconsistency: OTUs at 97% ID

Assume the true phylogeny:

A, B > 97% identity
B, C > 97% identity
Aand C not>87% ID

Possible valid OTUs:
AB, C (with A& C centroids)
A, BC (with A& C centroids)

ABC (with B centroid)

OTU pipelines will arbitrarily pick one of the three solutions.
Is this actually a problem??

Slide of Aaron Darlin



Same species (16S): Different genomes

193

MG 1655 (K-12) 93

non-pathogenic

585
7.6%
2996
39.2%
514
204 ,
6.7% \ 2.6%
1346
, 17.6%
Total proteins = 7638
2996 (39.2%) inall 3 .
911(11.9%)in 2out of 3 EDL933 (0157‘H7)
3554 (46.5%) in 1 out of 3 enterohaemorrhagic

CFTo73

1623\ uropathogenic

21.2%

Welch et al (2002)



Tree way plot with top OTUs abundance and classification
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Cumulative Abundance plots o s

3 Other / unclassified

== Deltaproteobacteria Actinobacteria == Alphaproteobacteria
mm Acidobacteria = Firmicutes mm Gammaproteobacteria
mm Chloroflexi = Bacteroidetes mm Betaproteobacteria
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%
Hacquard et al (2015)



Phylogenetic Analysis of

OTU abundances

Relationship between
OTUs

Hacquard et al (2015)
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Concept: Diverisity measures



Measures of biodiversity

“... measuring biodiversity
consists of characterizing
the number, composition
and variation in taxonomic
or functional units (OTU)
over a wide range of
biological organizations”

Zinger et al (2012)
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Measures of biodiversity Zinger et al (2012)

Alpha diversity refers to the diversity within one location or sample. It is often measured as species richness (i.e. number of
species), seldom as species evenness (extent of species dominance). Species richness is strongly sensitive to sampling effort, and
requires standardized samples, or the use of estimators that corrects undersampling biases, such as Chaol or ACE. Evenness is
less affected by undersampling biases and is usually assessed with Simpson’s or Pielou’s indices or rank abundance curves
(review in Magurran 2004).

Beta diversity consists in determining the difference in diversity or community composition between two or more locations
or samples (i) by considering species composition only, and use incidence data with associated metrics such as Jaccard or
Sorensen similarity indices or (ii) by taking species relative abundances into account, and use Bray-Curtis or Morisita-Horn
dissimilarity measures (Anderson et al. 2011). Using abundance data is, however, strongly discussed among microbiologists when
dealing with rRNA gene data because of variations in gene copy number among strains (Acinas et al. 2004b; Zhu ef al. 2005) as
well as PCR artefacts.

Gamma diversity, or regional diversity, is similar to alpha diversity but applies for a larger area that encompasses the units
under study.

Finally, the spatial scale of investigation can produce very different results and should be consistent in cross-study
comparisons (Magurran 2004).




Species sampling and Rarefaction

Rarefaction allows the calculation of
species richness for a given number
of individual samples, based on the
construction of so-called rarefaction
curves. This curve is a plot of the
number of species as a function of the
number of samples

Wooley et al (2010)

OTUs

Species rich habitat
Only a num. of species

A detected

This habitat has
not been exhaustively

sampled

Most of the species
have been sampled

Number of Reads / Clones



Alpha diversity

a measure of the diversity within a single sample

Types of alpha diversity
Total # of species = richness
How many OTUs?

Total # of genes = genetic richness
Phylogenetic diversity of genes = genetic PD

Eveness = What is the distribution of abundance in the community?
How many OTUs at high abundance and how many OTU at low abundance?
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Beta diversity

a measure of the similarity in diversity between samples

Types of beta diversity
Species presence/absence
Shared phylogenetic diversity
Gene presence / absence
Shared phylogenetic diversity of genes

Frequently used as values for PCA of PCoA analysis



Beta diversity

A. Membership:

shared OTU occurences across communities
1 = present, 0 = below detection

Occurences in | Occurences in Shared
» community community occurences
= A B A&B
o
§ OTU 1 1 0
3| OTU2 0 1
8| oTUu3 1 1 X
S| OTU 4 1 1 X
| OTUS 1 1 X
~d
B. Composition:
similar OTU abundances across communities
Abundances Abundances Similar
2 community community abundances
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@]
§ OTU 1 0.4 0
g OTU2 0 0.1
£| oru3 0.1 0.1 X©
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Shade and Handelsman (2012)

Phylogeny:
shared OTU lineages across communities

lineage
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Amplicon sequencing or metagenomes?



Workflow decision |

if /

|
- What microbes

PCR product
One gene fragment

_ Amplicon metage'r-\'omlc sequencing
Fast survey of large communities (165 rRNA gene: bacteria)

Good for first round survey l

Amplification and sequencing
of heterogeneous mixture of
165 rRNA genes

|

Bioinformatics analysis

« Alignment
« Classification
« Operational taxonomic unit (OTU) analysis

Grice and Segre (2012) sEintogenetic anatyshs

I are present? | o

Clinical or environmental sample
containing microbes

}

Extraction of éenon)ic DNA

\ on hypothesis and budget

Decision here based

What are the

microbes doing? —l TOta| DNA

All genes

!

Whole-genome shotgun
metagenomic sequencing

!

| Fragmenting of DNA, construction |

of paired-end libraries, sequencing
of heterogeneous mixture of DNA

!

J

Bioinformatics analysis

« Functional assignment of reads

- identification of enriched metabolic
pathways and gene functions

» Comparative metagenomics




Amplicon sequencing



New Tree of life:
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oo ;oo

260 4(:\0 6(:\0 860 1600 12‘00 14'00 bb
Vi V2 V3 v4 | V5 V6 v7 V8 Ve
= & Primer pair 1
= & Primer pair 2
« Advantages:

« Universal: Every bacterial and archea species has this gene
» Conserved regions (for primer design)
« Variable regions (to distinguish different species)
« Great databases and alignments (for human related species)
« Mainly used for taxonomical classification

* Problems:
» Variable copy number in each species
* No universal (unbiased) primers
« (Not directly correlated with activity)
* (Lack of functional information)

http://en.wikipedia.org/wiki/16S_ribosomal RNA



Typical workflow
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Potential problem

« Amplification bias effects accuracy and replication
« Use of short reads prevents disambiguation of similar strains

* 16S or ITS may not differentiate between similar strains —
 Clustering is done at 97%
« Regions may be >99% similar

« Sequencing error inflates number of OTUs
» Chloroplast 16S sequences can get amplified in plant metagenomes

Slide of Surya Saha



Chimeric 16S (Artificial sequences formed during PCR
amplification

--------- = Aborted extension
“Chimeras were found to
reproducibly form among
R S independent amplifications and
_________ N T contributed to false perceptions
of sample diversity and the false
4 identification of novel taxa, with
__________ e less-abundant species
exhibiting chimera rates
$ exceeding 70%”
Chimera

Haas et al (2011)



Metagenomics



Advantage of metagenomics approach

Better classification with Increasing number of complete genomes
Focus on whole genome based phylogeny (whole genome phylotyping)

Advantages
No amplification bias like in 16S/ITS

Issues

Poor sampling beyond eukaryotic diversity

Assembly of metagenomes is challenging due to uneven coverage
Requires high depth of coverage

Slide of Surya Saha (slideshare)
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Extraction protocol matters

Soil Biology &
Biochemistry

ELSEVIER Soil Biology & Biochemistry 36 (2004) 16071614 S

www elievier.comoc sted i lbio

Impact of DNA extraction method on bacterial community composition
measured by denaturing gradient gel electrophoresis
Julia R. de Lipthay*®, Christiane Enzinger™', Kaare Johnsen*?, Jens Aamand®,
Soren J. Serensen””*

*Depanment of Geochemistry, Geologioal Survey of Denmark and Greenland. @xter Vildgade 10, DK 1130 Copenhigen K, Denmark
"Deparmnent of Microbiolagy, University af Copenhagen, Sphgade 810, DK-1307 Copenhagen K, Denmark

Received | September 2003 received in revised form 6 March 2008 | sccepled |5 March 2004

Abstract

The impact of DNA exaction protocol on soil DNA yield and bacterial community composition wis evaluated. Three different
procedures to physically disrupt cells were compared: sonication, grinding-freczing-thawing, and bead beating. The three protocols were
applied 10 three different topsoils, For all soils, we found that csch DNA extraction method resulted in unique community patterns as
measured by denaturing gradient gel electrophoresis, This indicates the importance of the DNA extraction protocol on data for evaluating soil
hacterial diversity. Consistently, the bead-beating procedure gave rise to the highest number of DNA bands, indicating the highest number of
hactenial species. Supplementing the bead-beating procedure with additional cell-rupture steps generally did not change the bacterial
community profile. The same consistency was not observed when evaluating the efficiency of the different methods on soil DNA yicld, This
parameter depended on soil type. The DNA size was of highest molecular weight with the sonication and grinding-freezing thawing
procedures (approx. 20 kb). In contrast, the inclusion of bead beating resulted in more sheared DNA (approx. 6-20 kb). and the longer the
bead-beating time, the higher the fraction of low-molecular weight DNA. Clearly, the choice of DNA extraction pratocol depends on soil
type. We fourdd, however. that for the analysis of indigenous soil bactenial communitios the bead-beating procedure wis spprogriate because
it is fast, reproducible, and gives very pure DNA of relatively high molecular weight. And very importantly, with this protocol the highest soil
bacterial diversity was obtuined. We beheve that the choice of DNA extraction protocol will influence not only the determined phylogenctic
diversity of indigenous microbial communities, but also the obtained functiomal diversity. This means that the detected presence of a

Frmatinmal cana wnd thie tha indicatinn af ansmms asticitn s donand an tha natiom of tha sennliod T A acteactinn meanadime

“‘we found that each DNA
extraction method resulted in
unique community patterns”

Wesolowska-Andesen o al Microbiome 2014, 2:19
httpy Awww microbiom sjourna. comvcontent/2/1/19 - -
Microbiome
|

RESEARCH Open Access

Choice of bacterial DNA extraction method from
fecal material influences community structure as
evaluated by metagenomic analysis

Agata Wesolowska-Andersen’. Martin lain Ba Vera Kargen Kristansen'. Thomas Sicheritz-Pontén

Ramneek Gupta’ and & Rask Licht

7 N
Abstract
Background: In recent years emend sttenth
Application of next generation function has opened new

hoice of methodology

ioars to this field of researct

Results: In this study we conducted a syste

; flaborative effonts The European Mee ind the Americar
Ad nally, effects of homogenizing the samples before extractior
s in distribution of bacteral taxa depending on the mett
1 by the MetaHIT protocol, [INA fr na g the Ba
extracted by the HMP protocol
Conclusions: Whereas it Is comforting t ndividual variation dearly exceeded the varation resulting
from choice of extraction method, our the challenge of comparing data across studies applying
2Nt methodologies =
\ J

“We observed significant
differences in distribution of
bacterial taxa depending on the
method.”



Alpha diversity is always overestimated

Table 1. Effect of quality fitering and clustering on diversity estimates (OTU number), error rate and data loss of pyrotags amplified from twe
regions of E. coli MG1655 16S rRNA genes.

Read filtering

5" forward (V1 and V2)
Theoretical number
No quality filtering
Reads with N's removed
Quality score-based filtering
(% per-base error probability)
3
2
1
0.5
0.2
0.1
3" reverse (V8)
Theoretical number
No quality filtering
Reads with N's removed
Quality score-based filtering
(% per-base error probability)
3
2
1
0.5
0.2
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reads
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69.8

68.9
69.0
69.1
70.7
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77.8

846
85.3

84.8
85.1
85.3
87.5
89.6
90.7

% reads
used

77.9
76.7

77.7
77.6
773
753
70.8
57.8

94.4
93.6

942
93.8
93.3
89.5
82.1
706

Diversity estimates should be considered relative to the theoretical number of OTUs from E. coli.

Kunin et al (2010)



Reagent and laboratory contamination

RESEARCH ARTICLE Open Access

Reagent and laboratory contamination can
critically impact sequence-based microbiome
analyses

Susannah J Safter'”", Michael J Cox’, Elena M Turek’, Szymon T Calus’, William O Cookson, Miriam F Moffatt?,
Paul Turner*®, Julian Parkhill', Nicholas J Loman® and Alan W Walker'®"

RESEARCH HIGHLIGHT

Tracking down the sources of experimental
contamination in microbiome studies

Sophie Weiss', Amnon Amir®, Embriette R Hyde?, Jessica L Metcalf?, Se Jin Song? and Rob Knight**#*



2 papers with different results at the same year

Bacteroidetes >>> rest firmicutes >>> rest > bacteroidetes
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Case studies



Two most common systems
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Two most common systems
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Two most common systems

Table 1. Percentage of Shotgun Metagenome Reads Assigned to Each Kingdom of Life across Metagenome Studies

Cucumber® Wheat” Soybean” Wheat"® Oat® Pea® Barley® Gut®
Bacteria 99.36 99.45 96 88.5 77.3 73.7 94.04 99.1
Archaea 0.02 0.02 <1 <0.5 <0.5 <0.5 0.054
Eukaryotes 0.54 0.48 3 3.3 16.6 20.7 5.90 <0.1

20fek-Lalzar et al. (2014) (metagenomics of rhizoplane samples).
®Mendes et al. (2014) (metagenomics of rhizosphere samples).
“Turner et al. (2013) (metatranscriptomics of rhizosphere samples).
9Bulgarelli et al. (2015) (metagenomics of rhizosphere samples).
®Qin et al. (2010) (metagenomics of gut samples).

Hacquard et al (2015)
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Human gut microbiome
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Junjie Qin'*, Ruigiang Li'*, Jeroen Raes™, Manimozhiyan Arumugam®, Kristoffer Solvsten Burgdorf®,
Chaysavanh Manichanh?®, Trine Nielsen®, Nicolas Pons®, Florence Levenez®, Takuji Yamada?®, Daniel R. Mende?,
Junhua Li'?, Junming Xu', Shaochuan Li', Dongfang Li'®, Jianjun Cao', Bo Wang', Huiging Liang’, Huisong Zheng’,
Yinlong Xie'”, Julien Tap®, Patricia Lepage®, Marcelo Bertalan’, Jean-Michel Batto®, Torben Hansen®, Denis Le
Paslier'®, Allan Linneberg'', H. Bjern Nielsen’, Eric Pelletier'®, Pierre Renault®, Thomas Sicheritz-Ponten’,

Keith Turner'?, Hongmei Zhu', Chang Yu', Shengting Li', Min Jian’, Yan Zhou', Yingrui Li', Xiuging Zhang’,
Songgang Li', Nan Qin’, Huanming Yang', Jian Wang', Seren Brunak’, Joel Doré®, Francisco Guarner”,

Karsten Kristiansen'?, Oluf Pedersen™'*, Julian Parkhill'?, Jean Weissenbach'’, MetaHIT Consortiumt, Peer Bork?,
S. Dusko Ehrlich® & Jun Wang"*?

doi:10.1038/nature08821



Human gut microbiome
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Coverage of sequencing reads (%)

Assembled Known human GenBank
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Human gut microbiome
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Human gut microbiome

PC2

We can check which OTUs
constitute the clustering (and
separation) patterns

PC1| -> Biology
-> Biomarkers

rohn’s disease

,-/ P value: 0.031

-

doi:10.1038/nature08821



Human gut microbiome
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SAMPLING
CENTER

1. Human subjects sampled at 1-3 visits, at 15/18 body sites
RSID: random subject identifier, generated by EMMES,
submitted to SRA

=\

Table 1 | HMP donor samples examined by 16S and WGS

Body region Body site Total Total16S V13 V13 read V35 V35read  Samples Total WGS Total read Filtered Human Remaining Samples
samples samples samples depth (M)* samples depth (M)* V13andV35 samples depth (G)t reads reads read depth 16S and
(%)t (%)% Gyt WGS

Gut Stool 352 337 193 1.4 328 24 184 136 1,720.7 15 1 14506 124
Oral cavity Buccal mucosa 346 330 184 1.3 314 1.7 168 107 1,438.0 9 82 136.7 91
Hard palate 326 325 179 1.2 310 1.7 164 1 10.8 20 25 5.9 1
Keratinized gingiva 335 329 183 1.3 319 1.7 173 6 72.3 5 47 344 0
Palatine tonsils 337 332 189 1.2 315 1.9 172 6 74.8 2 80 13.5 1
Saliva 315 310 166 0.9 292 15 148 5 55.7 1 91 4.2 0
Subgingival plague 334 328 186 1.2 314 1.8 172 7 92.1 5 79 153 1
Supragingival plaque 345 331 192 1.3 316 1.9 177 115 1,500.7 15 40 6748 101
Throat 331 325 176 1.0 312 1.7 163 7 78.8 4 79 13.6 1
Tongue dorsum 348 332 193 1.3 320 2.0 181 122 1,620.1 15 19 10843 106
Airway Anterior nares 316 302 169 1.0 283 1.2 150 84 1,129.9 3 96 143 70
Skin Left antecubital fossa 269 269 158 0.7 221 0.5 110 0 NA NA NA 0 NA
Left retroauricular crease 313 312 188 1.6 295 1.5 1741 S 126.3 9 73 22.1 8
Right antecubital fossa 274 274 158 0.7 229 0.5 113 0 NA NA NA 0 NA
Right retroauricularcrease 319 316 190 14 304 1.6 178 15 181.9 18 59 424 12
Vagina Mid-vagina 145 143 91 0.6 140 1.0 88 2 22.6 0 99 0.2 0
Posterior fornix 152 142 89 0.6 136 1.0 83 53 702.1 6 90 25.2 43
Vaginal introitus 142 140 87 0.6 131 09 78 3 36.5 1 98 0.6 1
Total 5298 5,177 2971 19 4879 263 2,673 681 8,863.3 11 45 3,538.1 560
=

| NCBI U

6, Data submitted to NCBI Sequence Read Archives (SRA)
SRX: sequencing experiment
SRR: sequence run
SRS: sequencing sample (maps to SN)

doi:10.1038/nature11209



Human microbiome
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Inter-individual variation in the microbiome proved to be
specific, functionally relevant and personalized
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Gene loss & Structural variants are
common
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Skins

Genus level
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The gut microbiome during life
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Decreased diversity with Clostridium
difficile — assciated diarrhea
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Tracking microbiome on a daily scale
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Tracking microbiome spanning 6 years
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Tracking microbiome on a daily scale

(a)

Community state
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Question: What community gets reset and what don’t?



Question: What community gets reset and what don’t?

A. Shade, J.S. Read, N.D. Youngblut, N. Fierer, R. Knight, T.K. Kratz, N.R. Lottig, E.E.
Roden, E.H. Stanley, J. Stombaugh, et al.

Lake microbial communities are resilient after a whole-ecosystem disturbance Yes
ISME J, 6 (2012), pp. 2153-2167

L. Dethlefsen, D.A. Relman

Incomplete recovery and individualized responses of the human distal gut microbiota to
repeated antibiotic perturbation

Proc Natl Acad Sci U S A, 108 (2011), pp. 45544561 No

L.A. David, A.C. Materna, J. Friedman, M.l. Campos-Baptista, M.C. Blackburn, A. Perrotta,
S.E. Erdman, E.J. Alm

Host lifestyle affects human microbiota on daily timescales
Genome Biol, 15 (2014), p. R89 Yes and No
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ARTICLE oPEN

doi:10.1038/nature23889

Strains, functions and dynamics in the
expanded Human Microbiome Project

Jason Lloyd-Price!?*, Anup Mahurkar?*, Gholamali Rahnavard!-2, Jonathan Crabtree?, Joshua Orvis®, A. Brantley Hall?,
Arthur Brady”, Heather H. Creasy”, Carrie McCracken’, Michelle G. Giglio®, Daniel McDonald®, Eric A. Franzosa'?,
Rob Knight*3, Owen White? & Curtis Huttenhower!-?

The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of
microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human
Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave
of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple
time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations
of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified
species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified
pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed
microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of
baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.

Received 30 November 2016; accepted 8 August 2017.

doi:10.1038/nature23889 Published online 20 September 2017.
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Extended Data Figure 1 | Extended body-wide metagenomic taxonomic
profiles in HMP1-II. a, The combined HMP1-II datasets include a total
of 2,355 metagenomes (724 previously published and 1,631 new, including
252 technical replicates). These span the project’s six targeted body sites
(anterior nares, buccal mucosa, supragingival plaque, tongue dorsum,
stool, and posterior fornix) in addition to at least 20 samples each from 3
additional sites, of the 18 total sampled sites: retroauricular crease, palatine
tonsils, and subgingival plaque. Metagenomes are now available for at least
one body site for a total of 265 individuals. b, PCoA using Bray-Curtis
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Extended Data Figure 1 | Extended body-wide metagenomic taxonomic
profiles in HMP1-II. a, The combined HMP1-II datasets include a total
of 2,355 metagenomes (724 previously published and 1,631 new, including
252 technical replicates). These span the project’s six targeted body sites
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Environment dominates over host
genetics in shaping human gut microbiota

Daphna Rothschild"2*, Omer Weissbrod!+?*, Elad Barkan!?* Alexander Kurilshikov?®, Tal Korem'2, David Zeevil:?,

Paul I. Costeal?, Anastasia Godneva'?, Iris N. Kalka'?, Noam Bar'?, Smadar Shilo"2, Dar Lador!%, Arnau Vich Vila®4,

Niv Zmora®>67 Meirav Pevsner-Fischer®, David Israeli®, Noa Kosower!2, Gal Malka'2, Bat Chen Wolf!:2, Tali Avnit-Sagil2,

Maya Lotan-Pompan'?, Adina Weinberger!?, Zamir Halpern’?, Shai Carmi'’, Jingyuan Fu®'!, Cisca Wijmenga®*,

Alexandra Zhernakova?®, Eran Elinav§ & Eran Segall%§

Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains
elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral
origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly
associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We
show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated
individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors
related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly
improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that
use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving
clinical outcomes may be carried out across diverse genetic backgrounds.

Received 7 June 2017; accepted 16 January 2018.
doi:10.1038/nature25973 Published online 28 February 2018.
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Microbiome association index

Genetic heritability

Phenotype Israeli cohort | LLD cohort (literature)
HDL 35.9%*** 27.9% ™ 23.9%-48%
Lactose cons. 35.5%*"* N/A N/A

Waist circ. 28.8%™* 26%*** 15%-24%
Hip circ. 27. 1% 28%*** 10.6%-27%
Glycaemic status 24.5%™* N/A N/A

BMI 24 5% 27.8%*** 14%-32%
WHR 23.9%™* 6.9%"* 12%-14%
Fasting glucose 21.9%™ 8%™* 9%-33%
HbA1c% 16.1%"* 8.4% 21%-32%
Creatinine 12.3%* 6.7% 19%-25%
Height 3.2% 25.9%*** 33%-68%
Total cholesterol 0% 13.5% 14%-53%

doi:10.1038/nature25973

indicate a greater confidence in the estimation. b, b* estimates from the
analysis of 715 individuals with measured genotyped and gut microbiomes
from the Israeli cohort (left column) and of 836 individuals from the LLD
cohort (middle column) are comparable to previous genetic heritability
estimates®’—* (right column). *FDR < 0.05, **FDR < 0.01 and

##*FDR < 0.001. Cons., consumption, circ., circumference. ¢, b* estimates



c d e

HDL cholesterol — ¥ el T
Lactose consumption — * 7 | ——
*kk e
Waist circumference - X - =
_— - ————— :
Hip circumference — x AR [ ] ***EDR < 0.001. Cons., consumption, circ., circumference. c, b? estimates

- ——— — of several human phenotypes and their 95% confidence intervals,
Glycaemic status - * 1 . evaluated using 715 individuals. *FDR < 0.05, #*FDR < 0.01 and

i ***FDR < 0.001. d, Phenotype prediction accuracy for 715 individuals,
Body mass index — % | I evaluated using a LMM under different sets of predictive features

s L I (measured using coefficient of determination (R?)), using four different

Waist hip ratio i T—— J 1l models for each phenotype: (i) ‘Basic) age, gender and diet features;
= = (ii) ‘Basic + microbiome, basic features and relative abundances of
xE% e bacterial genes; (iii) ‘Basic + genetics, basic features and host genotypes;
Fasting glucose — X ol T and (iv) «ﬁasic _{_( ; & ; ' hagi g P
genetics 4+ microbiome’: basic features, relative
* o abundances of bacterial genes and host genotypes. e, The additive
HbA1c% H ——%— ol contribution of microbiome and genetics to prediction performance
" : : evaluated using a LMM across 715 individuals, over a model that includes
Creatinine X% 4 . only basic features. The joint contribution of microbiome and genetics is
1= similar to the sum of the individual contributions, suggesting these are
Height - | 1 independent contributions.
==
Total cholesterol Y—— - =
0 I E a2 I T T 1 T T T
0 10 20 30 40 50 600 0.2 0.4 06 O 0.05 0.1
Microbiome association index Prediction (R?) Contribution to prediction (R?)

(percentage of explained variance)

Basic: Age + gender + calories

mam Basic

mmm Basic + microbiome === Microbiome

B Basic + genetics mmm Genetics

— Basic + genetics mmm (Genetics + microbiome

doi:10.1038/nature25973 + microbiome



Box 1 | Ten areas of microbiome inquiry that should be pursued

* Understanding microbiome characteristics in relation to families: which features are inherited and which are not?*
* Understanding secular trends in microbiome composition: which taxonomic groups have been lost or gained?*

* For diseases that have changed markedly in incidence in recent decades, do changes in the microbiome have arole?
Notable examples include childhood-onset asthma, food allergies, type 1 diabetes, obesity, inflammatory bowel
disease and autism.**

* Do particular signatures of the metagenome predict risks for specific human cancers and other diseases that are
associated with ageing? Can these signatures be pursued to better understand oncogenesis? (Work on Helicobacter
pylori provides a clear example of this.)*

e How do antibiotics perturb the microbiome, both in the short-term and long-term? Does the route of
administration matter?*

* How does the microbiome affect the pharmacology of medications? Can we ‘micro-type’ people to improve
pharmacokinetics and/or reduce toxicity? Can we manipulate the microbiome to improve pharmacokinetic stability?**

* Can we harness knowledge of microbiomes to improve diagnostics for disease status and susceptibility?*

* Can we harness the close mechanistic interactions between the microbiome and the host to provide hints for the
development of new drugs?*

* Specifically, can we harness the microbiome to develop new narrow-spectrum antibiotics?*

» Can we use knowledge of the microbiota to develop true probiotics (and prebiotics)?**

*Areas currently under investigation. *Proposed areas for investigation.

doi:10.1038/nrg3182
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A communal catalogue reveals Earth’s
multiscale microbial diversity 27,751

Luke R. Thompson'-2?, Jon G. Sanders', Daniel McDonald!, Amnon Amir!, Joshua Ladau?, Kenneth J. Locey?, Robert J. Prill®, samp les 43 countries
Anupriya Tripathi'”#, Sean M. Gibbons*'°, Gail Ackermann’, Jose A. Navas-Molina"!!, Stefan Janssen', Evguenia Kopylova',
Yoshiki Vizquez-Baeza'-"!, Antonio Gonzdlez!, James T. Morton!"!!, Siavash Mirarab'?, Zhenjiang Zech Xu!, Lingjing Jiang"!3,
Mohamed F. Haroon'¢, Jad Kanbar!, Qiyun Zhu', Se Jin Song', Tomasz Kosciolek', Nicholas A. Bokulich'"®, Joshua Lefler!,
Colin J. Brislawn!®, Gregory Humphrey!, Sarah M. Owens'?, Jarrad Hampton-Marcell''¥, Donna Berg-Lyons!?,

Valerie McKenzie?®, Noah Fierer?*?!, Jed A. Fuhrman??, Aaron Clauset'?**, Rick L. Stevens®*?>, Ashley Shade?®+%"+%8,
Katherine S. Pollard*, Kelly D. Goodwin?, Janet K. Jansson!6, Jack A. Gilbert!’2?, Rob Knight!!1-*0 & The Earth Microbiome
Project Consortium*

7 continents

Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited 5 0 + 5 0 O +

understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols

and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences peer-reviewed : :
about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds publications scientists

of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use
of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene
sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale.
The result is both a reference database giving global context to DNA sequence data and a framework for incorporating 2 1 2
data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity. pH range
66 Snimathesty (stomach acid to household
species mnmonm)

78.9 °N - reference database of
bacteria that reside on

78.2 °S

tatitude range Ariic Planet Earth

Received 13 March; accepted 10 October 2017. Circle to Antarctica) Crodit: UC San Dimgpts Carttar for Microbiame Innavitian
. ¥ Ridererice: Thampsan et £ Neter. 2017, dub10 1038/natured 41621
Published online 1 November 2017.
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“a paradigm for future multi-omic studies of the human microbiome’

s Nasal Community Microbial
composition pathways sequences genomes
S /‘---~~\
2 ] LY
N ¥ 1
§ 1 i
% ]
) "

.,

4
-.--" j

A,

HMP1 =~ — Oral
Vagina o) o, - g
’ @ ‘0 ’) ':,‘

Healthy cohort study >—’ =4 i
e Characterize microbiomes

® Correlate with phenotype

,wa e _)
>-> HMP DCC

0‘0
Demonstration projects
HMP2 Community Microbial Virome Antibody Deta tools
composition pathways profiles profiles prot,o ol ;
o —=--  — Ny
IR R @ ® N\
J C e '\\X

=
Epigenome profiles Cytokine profiles
o

Host genomes

Preter\;ﬁ birth
4" - "’ Longitudinal "VAy,,pH“FM{ ~ A@(@(@f ) ‘n ‘ @
IL-4 IL-2

{

sampling
2 ] —_—
(Meta)transcriptomics (Meta)proteomics Metabolomics
Z=NA C_@
o D
@ O

Inflammatory
bowel diseases

II’;”/; ;

1 —/
» Characterize the host and microbiome
® Follow dynamics over time

Pre-diabetes

Proctor, L.M., Creasy, H.H., Fettweis, J.M. et al. The Integrative Human Microbiome Project.
Nature 569, 641-648 (2019). https://doi.org/10.1038/s41586-019-1238-8



New challenges

« So much data

 Technology advancement

« Integrating different kinds of data (multi-omic)
« High performance

 Reproducibility crisis

« Bioinformaticians as a profession

« Only biology has a specific term to refer to the use of computers in this discipline
(‘bicinformatics’)

* Proper integration into academic curriculums



